Skip to main content
Log in

Quantum state manipulation of dipole emitters with a plasmonic double-bar resonator

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We demonstrate efficient processes of entanglement generation and quantum state transfer (QST) with dipole emitters coupled to a plasmonic double-bar resonator. The bipartite and multipartite maximal entanglement and complete QST can be deterministically achieved by selecting appropriate coupling strength between individual emitters and the resonator mode. Moreover, the entanglement dynamics show that high fidelities of entanglement generation and QST can be realized even under imprecise coupling strength and the system decay. The feasibility analysis and practical implementation are discussed, which manifest that our schemes may be meaningful for exploring solid-state quantum information processing with the metal plasmonic mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Cirac, J.I., Zoller, P., Mabuchi, H., Kimble, H.J.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  Google Scholar 

  3. Hammerer, K., Sørensen, A.S., Polzik, E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010)

    Article  ADS  Google Scholar 

  4. Zheng, S.-B., Guo, G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  5. Sackett, C.A., Kielpinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchette, Q.A., Itano, W.M., Wineland, D.J., Monroe, C.: Experimental entanglement of four particles. Nature (London) 404, 256–259 (2000)

    Article  ADS  Google Scholar 

  6. Zou, X.-B., Pahlke, K., Mathis, W.: Generation of an entangled state of two three-level atoms in cavity QED. Phys. Rev. A 67, 044301 (2003)

    Article  ADS  Google Scholar 

  7. Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2004)

    Article  ADS  Google Scholar 

  8. Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242–5245 (1997)

    Article  ADS  Google Scholar 

  9. Zhang, J., Peng, K., Braunstein, S.L.: Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68, 013808 (2003)

    Article  ADS  Google Scholar 

  10. Matsukevich, D.N., Kuzmich, A.: Quantum state transfer between matter and light. Science 306, 663–666 (2004)

    Article  ADS  Google Scholar 

  11. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  12. Ficek, Z., Tanaś, R.: Entangled states and collective nonclassical effects in two-atom systems. Phys. Rep. 372, 369–443 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Solano, E., Agarwal, G.S., Walther, H.: Strong-driving-assisted multipartite entanglement in cavity QED. Phys. Rev. Lett. 90, 027903 (2003)

    Article  ADS  Google Scholar 

  14. Kastoryano, M.J., Reiter, F., Sørensen, A.S.: Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502 (2011)

    Article  ADS  Google Scholar 

  15. Bliokh, K.Y., Bliokh, Y.P., Freilikher, V., Savel’ev, S., Nori, F.: Unusual resonators: plasmonics, metamaterials, and random media. Rev. Mod. Phys. 80, 1201–1213 (2008)

    Article  ADS  Google Scholar 

  16. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature (London) 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  17. Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J., Ebbesen, T.W.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature (London) 440, 508–511 (2006)

    Article  ADS  Google Scholar 

  18. Chang, D.E., Sørensen, A.S., Hemmer, P.R., Lukin, M.D.: Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006)

    Article  ADS  Google Scholar 

  19. Pacifici, D., Lezec, H.J., Atwater, H.A.: All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photon. 1, 402–406 (2007)

    Article  ADS  Google Scholar 

  20. Chang, D.E., Sørensen, A.S., Demler, E.A., Lukin, M.D.: A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007)

    Article  Google Scholar 

  21. Min, B., Ostby, E., Sorger, V., Ulin-Avila, E., Yang, L., Zhang, X., Vahala, K.: High-\(Q\) surface-plasmon-polariton whispering-gallery microcavity. Nature 457, 455–458 (2009)

    Article  ADS  Google Scholar 

  22. Sorger, V.J., Oulton, R.F., Yao, J., Bartal, G., Zhang, X.: Plasmonic Fabry–Perot nanocavity. Nano Lett. 9, 3489–3493 (2009)

    Article  ADS  Google Scholar 

  23. Gullans, M., Tiecke, T.G., Chang, D.E., Feist, J., Thompson, J.D., Cirac, J.I., Zoller, P., Lukin, M.D.: Nanoplasmonic lattices for ultracold atoms. Phys. Rev. Lett. 109, 235309 (2012)

    Article  ADS  Google Scholar 

  24. Gonzalez-Tudela, A., Martin-Cano, D., Moreno, E., Martin-Moreno, L., Tejedor, C., Garcia-Vidal, F.J.: Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 106, 020501 (2011)

    Article  ADS  Google Scholar 

  25. Cheng, M.-T., Ma, X.-S., Luo, Y.-Q., Wang, P.-Z., Zhao, G.-X.: Entanglement generation and quantum state transfer between two quantum dot molecules mediated by quantum bus of plasmonic circuits. Appl. Phys. Lett. 99, 223509 (2011)

    Article  ADS  Google Scholar 

  26. Chen, G.-Y., Li, C.-M., Chen, Y.-N.: Generating maximum entanglement under asymmetric couplings to surface plasmons. Opt. Lett. 37, 1337–1339 (2012)

    Article  ADS  Google Scholar 

  27. Chen, G.Y., Lambert, N., Chou, C.H., Chen, Y.N., Nori, F.: Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement. Phys. Rev. B 84, 045310 (2011)

    Article  ADS  Google Scholar 

  28. Liu, S., Li, J., Yu, R., Wu, Y.: Generation of long-time maximum entanglement between two dipole emitters via a hybrid photonic-plasmonic resonator. Phys. Rev. A 87, 042306 (2013)

    Article  ADS  Google Scholar 

  29. Lin, Z.R., Guo, G.P., Tu, T., Li, H.O., Zou, C.L., Chen, J.X., Lu, Y.H., Ren, X.F., Guo, G.C.: Quantum bus of metal nanoring with surface plasmon polaritons. Phys. Rev. B 82, 241401 (2010)

    Article  ADS  Google Scholar 

  30. Jin, X.R., Gao, J.: Quantum phase flip gate based on plasmonic double-bar resonators. Opt. Lett. 38, 2110–2112 (2013)

    Article  ADS  Google Scholar 

  31. Dung, H.T., Knöll, L., Welsch, D.G.: Resonant dipole–dipole interaction in the presence of dispersing and absorbing surroundings. Phys. Rev. A 66, 063810 (2002)

    Article  ADS  Google Scholar 

  32. Dung, H.T., Knöll, L., Welsch, D.G.: Decay of an excited atom near an absorbing microsphere. Phys. Rev. A 64, 013804 (2001)

    Article  ADS  Google Scholar 

  33. Wootters, W.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  34. Orszag, M., Hernandez, M.: Coherence and entanglement in a two-qubit system. Adv. Opt. Photon. 2, 229–286 (2010)

    Article  Google Scholar 

  35. Zheng, S.-B.: Scalable generation of multi-atom W states with a single resonant interaction. J. Opt. B: Quantum Semiclass. Opt. 7, 10–13 (2005)

    Article  ADS  Google Scholar 

  36. Cheng, L.-Y., Wang, H.-F., Zhang, S., Yeon, K.-H.: Generation of two-atom Knill–Laflamme–Milburn states with cavity quantum electrodynamics. J. Opt. Soc. Am. B 29, 1584–1588 (2012)

    Article  ADS  Google Scholar 

  37. Imamoḡlu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999)

    Article  ADS  Google Scholar 

  38. Xu, X., Sun, B., Berman, P.R., Steel, D.G., Bracker, A.S., Gammon, D., Sham, L.J.: Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nat. Phys. 4, 692–695 (2008)

    Article  Google Scholar 

  39. You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42–47 (2005)

    Article  Google Scholar 

  40. Liu, N., Langguth, L., Weiss, T., Kästel, J., Fleischhauer, M., Pfau, T., Giessen, H.: Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758–762 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou Zhang.

Additional information

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61068001, 11264042 and 11165015; the Program for Chun Miao Excellent Talents of Jilin Provincial Department of Education under Grant No. 201316; and the Talent Program of Yanbian University of China under Grant No. 950010001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, LY., Guo, Q., Wang, HF. et al. Quantum state manipulation of dipole emitters with a plasmonic double-bar resonator. Quantum Inf Process 13, 2513–2523 (2014). https://doi.org/10.1007/s11128-014-0807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0807-x

Keywords

Navigation