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Abstract With the overwhelming success in the field of quantum information in the
last decades, the ‘quest’ for a Quantum Neural Network (QNN) model began in or-
der to combine quantum computing with the striking properties of neural computing.
This article presents a systematic approach to QNN research, which so far consists
of a conglomeration of ideas and proposals. It outlines the challenge of combining
the nonlinear, dissipative dynamics of neural computing and the linear, unitary dy-
namics of quantum computing. It establishes requirements for a meaningful QNN
and reviews existing literature against these requirements. It is found that none of the
proposals for a potential QNN model fully exploits both the advantages of quantum
physics and computing in neural networks. An outlook on possible ways forward is
given, emphasizing the idea of Open Quantum Neural Networks based on dissipative
quantum computing.

Keywords Quantum Computing · Artificial Neural Networks · Open Quantum
Systems · Quantum Neural Networks

1 Introduction

Quantum Neural Networks (QNNs) are models, systems or devices that combine
features of quantum theory with the properties of neural networks. Neural networks
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(NNs) are models of interconnected units based on biological neurons feeding
signals into one another. A large class of NNs uses binary McCulloch-Pitts neurons
[1, 2], thus reducing the complex process of signal transmission in neural cells to the
two states ‘active/resting’. The analogy with the two-level qubit serving as the basic
unit in quantum computing gives an immediate connection between NN models and
quantum theory. The majority of proposals for QNN models are consequently based
on the idea of a qubit neuron (or ‘quron’ as we suggest to name it), and theoretically
construct neurons as two-level quantum systems.

Although close to discussions about the potential ‘quantumness of the brain’
[3, 4, 5], QNNs do not intend to explain our brain functions in terms of quantum
mechanics. Neurons are macroscopic objects with dynamics on the timescale of
microseconds, and a quron’s theoretically introduced two quantum states refer
to a process involving millions of ions in a confined space, leading to estimated
decoherence times in the order of 10−13 sec and less [6], thus making quantum
effects unlikely to play a role in neural information processing. However, QNNs
promise to be very powerful computing devices [10, 11]. Their potential lies in the
fact that they exploit the advantages of superposition-based quantum computing
and parallel-processed neural computing at the same time. QNN research can
furthermore be seen as a part of a growing interest of scientist and IT companies
to develop quantum machine learning algorithms for efficient big data processing
[7, 8, 9]. Artificial neural networks thereby play an important role as intelligent
computational methods for pattern recognition and learning.

The debate on quantum approaches to neural networks emerged in the wake of a
booming research field of quantum computing two decades ago. One year after Shor
proved the potential power of quantum computers by introducing his famous prime
factorisation algorithm in 1994 [12], Kak [3] published some first ideas to find a
junction between neural networks and quantum mechanics. Since then, a number of
proposals claim the term ‘Quantum Neural Network’ [13, 14, 15, 16, 17, 18, 19, 20].
However, until today a major breakthrough is still outstanding and QNN research
remains an exotic conglomeration of different ideas under the umbrella of quantum
information. The reason for this is that beyond the ‘quron’, the nonlinear dissipative
dynamics of neural computation [1] are fundamentally different to the linear, unitary
dynamics of quantum computing [21]. To find a meaningful QNN that integrates
both fields into the ‘quantum evolution of a neural network’ is therefore a highly
nontrivial task.

This article presents a systematic study of QNN research.1 First, neural
computing as well as quantum computing are briefly introduced to sketch the
above mentioned problem structure (Sections 2 and 3). Second, a framework of
requirements for a potential QNN based on Hopfield-like neural networks with the
property of associative memory is established and existing literature is reviewed on

1 The only systematic review in the field of QNNs was given in 2000 by Ezhov and Ventura [22] (not
counting the brief overview of the different types of implementations of QNNs in Oliveira et al. [19]). To
our knowledge, there is no recent comprehensive review.
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this background (Section 4). It is found here that none of the proposals for a QNN
model satisfies the given requirements. In conclusion, new ideas for approaches
to QNN models are needed. This article therefore gives an outlook on the idea of
Open Quantum Neural Networks (Section 5). Based on the theory of open quantum
systems [23] and the new emerging field of dissipative quantum computing [24],
Open Quantum Neural Network models would make use of dissipation in order to
obtain dynamical properties similar to neural networks.

2 Neural computing

Computing in artificial neural networks is derived from our neuroscientific under-
standing of how the brain processes information in order to master its impressive
tasks. The brain is widely believed to encode information in the connectivity
architecture of 1011 neural cells connected by 1014 synapses [28]. Neurons propagate
firing signals along this architecture. These so called action potentials are traveling
depolarisations of the equilibrium membrane potential due to ion flux through
voltage-gated channels along their axons. The signals feed into other neurons
through synaptic connections between the axon ends of a pre-synaptic neuron and
the dendrites of a post-synaptic neuron (see Fig. 1). In the simplified model of a
McCulloch-Pitts neuron [2], a neuron is in an ‘active’ state if it is firing with a
sufficient rate, while otherwise it is ‘resting’. In mathematical notation, neurons are
symbolised by variables x,y = {−1,1}, where ‘1’ indicates that the neuron is firing
and ‘−1’ that it is resting.

The activation mechanism of a neuron y due to the input of N other neurons
x1, ...,xm forms the core of neural computing. This setup is called a perceptron (see
Fig. 1). Two important features characterise this mechanism. First, the incoming
(‘pre-synaptic’) signal {−1,1} from each neuron x1, ...,xm is transformed into a post-
synaptic signal by the respective synapse connecting it to neuron y. This amplification
of incoming signals ensures a rich computational variety [29] and the properties of
a NN are indeed stored in the synapses. The synapse’s modulating effects can be
formally expressed through a parameter wiy ∈ [−1,1], i = 1, ...,m symbolising the
synaptic strength. Second, neuron y is activated in an ‘integrate-and-fire’ mechanism,
meaning that the post-synaptic signals are simply added up and compared with the
specific threshold θy of neuron y. If the resulting signal exceeds the threshold, y is ac-
tivated and consequently set into the state ‘fire’; if not, y rests. This can be formulated
through the equation

y =

1, if
m
∑
j=1

w jyx j ≤ θy,

−1, else.
(1)

A neural network is then a set of neurons {x1, ...,xN} ∈ {−1,1} with respec-
tive thresholds {θ1, ...,θN}, connected through synaptic strengths wi j ∈ [−1,1], i, j =
1, ...,N. Note that a network can thus encode a binary string (x1 =±1, ...,xN =±1) in
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Fig. 1 Illustration of the perceptron mechanism in neural computing.(a) In this illustration of a biological
perceptron, three ‘input neurons’ (blue) feed their pre-synaptic signals into the ‘output neuron’ (green).
The pre-synaptic signals are transformed into post-synaptic signals by synapses (red) and travel through the
dendrites to the cell body where they add up to a resulting signal. The output signal that propagates along
the axon and feeds into the next layer of neural cells nonlinearly depends on the strength of the resulting
signal. (b) Artificial perceptrons are based on binary neurons of the states active/resting, represented by
the values −1,1. The input neurons are denoted by x1,x2,x3 ∈ {−1,1}, the synaptic weights are chosen
to be w1y,w2y,w3y ∈ [−1,1] and y’s output is −1 or 1, depending on the resulting signal ∑ j x jw jy. (c)
This simplified perceptron mechanism leads to rich dynamics in fully connected neural networks (here
illustrated by a graph), where the global firing state of a neural network converges to local attractors, a
feature that gives rise to associative memory, pattern classification etc.

its firing pattern or ‘network state’. Each neuron and its input from adjacent neurons
form a perceptron unit. An update of neuron xi, i ∈ {1, ...,N} follows the activation
function and reads

xi =

1, if
N
∑
j=1

w jix j ≤ θi,

−1, else.
(2)

The neurons of a neural network can be updated in different protocols, for example
in a synchronous, chronological or random order [30, 31].

A neural network of McCulloch-Pitts neurons in which the connectivity architec-
ture obeys

wi j = w ji, wii = 0, (3)

is called Hopfield Neural Network (HNN) [30, 32]. We will concentrate on HNNs in
the following, although much of what is said can be easily transferred to the other big
class of NNs, so called Feed-Forward Neural Networks. Although of a simple setup,
the Hopfield model shows the powerful feature of associative memory. Associative
memory is the ability to retrieve the network state out of P stored network states
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XP = {(x(1)1 , ...,x(1)N ), ...,(x(P)1 , ...,x(P)N )} which is closest to the input pattern in
terms of Hamming distance2. Also called ‘content addressable memory’, associative
memory allows to compute incomplete input information instead of the pattern’s
exact storage address needed in a computer’s Random Access Memory. Accessing
stored information upon incomplete inputs forms the basis of human memory and
learning.

The easiest way to understand how HNNs store and retrieve information in terms
of network firing states is to introduce the energy function of a firing state (x1, ...,xN)
with threshold vector (θ1, ...,θN) and synaptic connections wi j, i, j = 1, ...,N, which
reads

E(x1, ...,xN) =−
1
2

N

∑
i=1

N

∑
j=1

wi jxix j +
N

∑
i=1

θixi.

Note that this is equivalent to the energy function of an Ising spin-glass model,
a fact that opens HNN research to methods of statistical physics [34, 35]. Similar
to a relaxing spin chain, the Hopfield network’s dynamics converge to minimum
or ground state of the energy function. In other words, each update of a neuron
minimises the energy of the network state if possible, or maintains it otherwise [31].
Memorised firing patterns are thus stored as stable attractors in the NN’s dynamics
and an initial firing pattern will always end up in the minimum of the basin of
attraction it lies in [1].

HNNs inherit the attractors from the nonlinear activation function given in Eq.
(2). The property wii = 0 makes sure that all attractors are stable states (as opposed
to limit cycles of alternating states) [31]. To store the set of firing patterns XP =

{(x(1)1 , ...,x(1)N ), ...,(x(P)1 , ...,x(P)N )} in the energy landscape of a HNN, the synaptic
weights can be chosen according to Hebb’s learning rule

wi j =
1
P

P

∑
p=1

x(p)
i x(p)

j , (4)

reflecting that neurons that have the same state in the majority of memory patterns
will receive a synaptic weight close to 1 while a high antiparallel correlation
gives rise to a weight close to −1. The number of patterns that can be stored in a
network largely depends on the patterns themselves, for example patterns with a
low Hamming distance are more prone to be confused in the retrieval process. This
is why different upper bounds for the storage capacity can be found. Hertz et al.
estimate a capacity (memorisable patterns divided by the number of neurons) of
c = 0.138 [36], while others speak of c = N/(4lnN) [37].

2 The Hamming distance is the number of state flips to turn one binary string into another one, thus
measuring the overlap between two binary strings [33].



6 Maria Schuld et al.

Hopfield published a variation of his model in 1984 [38] based on so called
graded-response neurons. Instead of the binary values of a McCulloch-Pitts neu-
ron, graded response neurons can take values out of a continuous range, for example
x ∈ [−1,1]. The step-function gets replaced by a sigmoid function

sgm(a;κ) =
1

1+ e−κa ,

with steepness parameter κ and the updaing or activation function of a neuron xi due
to the input of neurons x j, j ∈ {1, ...,N} consequently reads

xi = sgm

(
N

∑
j=1

w jix j;κ

)
. (5)

Note that with κ→∞, the sigmoid function includes the step-function as a limit case.
Hopfield showed that the graded-response model has equivalent attractor-properties
to the original model.

3 Quantum computing

The term ‘quantum computing’ usually refers to the engineered coherent evolution
of a number of quantum two-level systems of a 2-dimensional Hilbert space H2 with
basis {|0〉 , |1〉} called qubits and described by the wavefunction

|ψ〉= α |0〉+β |1〉 ,

|α|2 + |β |2 = 1, α,β ∈ C.

The evolution of qubits through so called quantum channels is carried out by unitary
quantum gates that manipulate the qubits just like classical bits are manipulated by
logic gates in a computer [21, 39]. In mathematical language, quantum gates are
unitary linear transformations of the quantum state vectors. The power of quantum
computing lies in the fact that a qubit – as opposed to a classical bit – can be in
a superposition of its two basis states. This allows for the parallel exploitation of
different ‘paths’ of computation at the same time using interference effects. The
result of a quantum computation algorithm is of probabilistic nature and encoded in
the final coefficients |α|2 and |β |2 that indicate probabilities to measure either one of
the two basis states. It can be read out through repeated measurements of the qubit
system.

Quantum physics is a linear theory, meaning that maps of one state onto another
are executed by linear operators. The operators are furthermore unitary, ensuring
probability conservation. In fact, the current challenge in the implementation of
a quantum computer lies in the difficulty to maintain coherence in a multiple-
qubit system in order to simulate unitary dynamics. Real systems interact with
an environment, thus introducing effects of dissipation (loss in the population
of quantum states) and decoherence (destruction of quantum state correlations).



The quest for a Quantum Neural Network 7

nonunitary evolution

u
n

ita
ry e

vo
lu

tio
n

Dissipative Quantum Computing

preparation 

of qubits
evolution through quantum gates measurement

S
Y

S
T

E
M

Coherent Quantum Computing

ENVIRONMENT

Fig. 2 Quantum computing consists of the preparation, evolution and measurement of qubits. In regimes
of dissipative quantum computing, the qubits are not only manipulated by unitary quantum gates, but also
interact with an environment

However, in recent years more general forms of quantum computing have been
introduced that do not regard decoherence or dissipation as necessary evils, but as a
means to engineer the desired evolution of a quantum system. So called Dissipative
Quantum Computing [24] is based on the theory of open quantum systems describing
systems in interaction with a large environment. The total system consisting of the
principal system plus its environment still obeys the unitary evolution of quantum
theory, but the principal system alone propagates nonunitarly and is exposed to
decoherence. In the scheme found by Verstraete, Wolf and Cirac [24], the system
and environment is engineered so that the initial state |0, ...,0〉 is mapped to a desired
final state |ψT 〉 that can be read out of the system after time T with a probability of 1

T .

The idea of dissipative quantum computing is highly interesting for QNN re-
search, since it allows for quantum computing algorithms based on dynamic attrac-
tors and steady states. It is of course obvious that the scheme above [24] does not
realise associative memory since the choice of inputs and output is limited to one
each. However, other ideas of open quantum systems with more than one ground
state and attractive dynamics could be a way forward in QNN research that shall be
discussed further below. Other alternatives to coherent quantum computing that could
be highly interesting for QNN research are measurement-based quantum computing
[25], adiabatic quantum computing [26] or duality quantum computing [27].

Requirements for a QNN model

As mentioned earlier, the basic idea of introducing quantum properties into classical
NNs is to replace the McCulloch-Pitts neuron x= {−1,1} by a ‘quron’ |x〉 of the two-
dimensional Hilbert space H 2 with basis {|0〉 , |1〉}. The state |ψ〉 of a network with
N qurons thus becomes a multiparticle quantum state of the 2N-dimensional Hilbert
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Fig. 3 A quron is a qubit in which the two levels stand for the active and resting neural firing state. This
allows for a neural network to be in a superposition of firing patterns, the central property that is exploited
in QNN models

space H 2N
= H 2⊗ . . .⊗H 2 with basis {|0,0, . . . ,0〉 , ..., |1,1, . . . ,1〉} reading

|ψ〉=
2N

∑
i=1

ai |x1x2 . . .xN〉i , (6)

where the ai, i ∈ {1, ...,2N} refer to the complex amplitudes assigned to the respec-
tive network basis states.

Apart from the quron, proposals for QNN models vary strongly in their proximity
to the idea of neural networks. In order to access their scope, we want to introduce
three minimum requirements for a meaningful QNN that is based on the Hopfield
Neural Network model and contains the feature of associative memory. These re-
quirements can be summarised as:

1. The initial state of the quantum system encodes any binary string of length N.
The QNN produces a stable output configuration encoding the one state of 2M

possible output binary strings of length M which is closest to the input by some
distance measure.

2. The QNN reflects one or more basic neural computing mechanisms (attractor
dynamics, synaptic connections, integrate & fire, training rules, structure of a
NN)

3. The evolution is based on quantum effects, such as superposition, entanglement
and interference, and it is fully consistent with quantum theory.

The first point ensures that the QNN has the feature of associative memory, pattern
recognition and other central properties of neural information processing. Require-
ment (2) demands a connection to the idea of neural computing, but is held very
general in order to cater for the variety of existing and future approaches. It is still
important in order to exclude quantum computing algorithms that simulate associa-
tive memory with no relation to neural networks, so called Quantum Associative
Memories. The third point makes sure that the network qualifies as a Quantum
Neural Network. Of course, there are other possible frameworks for QNNs. For
example, there is theoretically no reason to confine the information processed to
binary units as given in classical computers. However, these requirements shall serve
as a guideline to access existing proposals of QNNs. Also note that the requirements
include Feed-Forward NNs and other typical tasks such as pattern classification and
pattern completion in addition to HNNs and associative memory which are analysed
here.
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If confronted with the problem of finding a QNN model that fulfils points 1-3, a
fundamental challenge appears in the integration of the nonlinear, dissipative dynam-
ics of attractor-based NNs and linear, unitary quantum theory. The problem becomes
most apparent if we have a look at the perceptron setup. In neural computing, the
incoming signal ∑

N
j=1 w jix j of the N neurons x j, j 6= i connected to neuron xi by

weights wi j gets mapped to the output of neuron xi by a step-function, or, in case
of graded-response neurons, by a sigmoid function. This nonlinearity leads to the
attractor-like dynamics fundamental for associative memory. If we introduce quan-
tum mechanics, we necessarily look at firing probabilities instead of deterministic
values. However, mapping firing probabilities onto one another by a nonlinear func-
tion contradicts the basic principle of the linear evolution in quantum theory, where
linear superpositions of solutions of the Schrödinger equation play an important
role. One apparent exception are measurements, which can be understood as a prob-
abilistic step-function process: a measurement would ‘collapse’ the superposition
of a quron state onto one of the basis vectors {|0〉 , |1〉} with probability |α|2, |β |2
respectively. However, if a quantum equivalent of a perceptron would be constructed
to simply induce measurements, the dynamics would evolve classically (more pre-
cisely, as a probabilistic classical perceptron) as quantum mechanical effects would
be destroyed in every updating step. A more advanced approach is therefore required.

The idea to understand the neural activation function in terms of a quantum mea-
surement has been attempted by several authors, and seems an elegant solution to the
problem to unify the diverse dynamics of neural networks and quantum theory. How-
ever, so far there has been no proposal that is able to capture the property of associa-
tive memory as demanded in Requirement (1). Other authors sacrifice the proximity
to neural networks (demanded in (2)) or use quantum mechanics as an inspiration
rather than implementing the full theory (violating Requirement (3)). The next sec-
tion will review the different approaches to find a QNN model on the background of
the three requirements in more detail.

4 Review of existing approaches to QNNs

As mentioned earlier, the term ‘Quantum Neural Network’ is claimed by a number
of different proposals, and the field is still in the process to establish a coherent
definition of its own subject. Fig. 4 shows the Thomsen Reuter’s Web of Science
citation statistics for articles related to the keyword ‘Quantum Neural Network’ that
the number of publications has been steadily low, although the interest in QNNs is
significantly growing.

The existing approaches can be summarised into a number of classes sharing a
similar idea. The above discussed interpretation of QNNs on the basis of quantum
measurements is an idea suggested in the early works on QNNs, and often remained
a theoretical consideration rather than a fully functioning model [3, 41, 40, 42]. A
more practical approach that has received a relatively high amount of attention was
Elizabeth Behrman’s suggestion to realise a QNN through interacting quantum dots
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Fig. 4 Number of published articles (left) and citations of articles (right) with the term ‘Quantum Neural
Networks’ appearing in the topic or title since 1994 (Source: Thomsen Reuter’s Web of Science). Note
that hits on neural network methods in quantum chemistry were manually excluded

[43, 20, 44]. A large share of the literature on QNNs also comes from the discipline
of quantum computing and tries to find specific quantum circuits that integrate the
mechanisms of neural networks in some way [15, 19, 45, 10, 18, 46]. Quantum Asso-
ciative Memories [47, 48, 49] are quantum algorithms that reproduce the properties
of a neural network without trying to copy its dynamics or setup. Often cited is also
the idea to introduce a Quantum Perceptron [50, 14]. In addition to these branches, a
number of other proposals will be mentioned.

4.1 Ideas to interpret the step-function as measurement

Probably the first quantum approach to neural network research was published by
Subhash K. Kak [3]. He introduced the idea of “quantum neural computation” by
interpreting the necessary condition for a stable state x0 = (x0

1, ...,x
0
N) in a ‘Hopfield-

like’ network defined by the weight matrix w with entries wi j,

sgm(wx0) = x0,

as an eigenvalue equation of a quantum system, ŵ |x0〉= λ |x0〉. The weight matrix w
thereby becomes an operator with eigenvector |x0〉 and eigenvalue λ = 1. Updating a
network then corresponds to a quantum measurement that selects the eigenstates of
a system. Kak notes that the sigmoid function is a nonlinearity that has no equivalent
in the quantum mechanical formalism but does not discuss this crucial point any
further. He concludes that “brains are to be viewed as quantum systems with their
neural structures representing the classical measurement hardware” [3].

Mitja Peruš [40] followed similar lines when he emphasises the analogy between
what he calls a ‘Hopfield-like’ network and quantum theory, comparing an updating
function stripped bare of the important threshold or sigmoid function,

xi(t2) =
n

∑
i=1

wi jx j(t1),
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Fig. 5 Different approaches to develop a Quantum Neural Network. (a) Several authors notice the analogy
between the nonlinear stepfunction in the activation of a neuron and a measurement process, here sym-
bolised by Schrödinger’s famous cat. (b) Many contributions try to build quantum circuits with gates or
features inspired by neural computing. (c) A challenge in finding a QNN model is to translate the core
mechanism of a perceptron into a corresponding quantum version without loosing the rich dynamics of
neural networks. (d) An interesting branch of proposals understands interacting quantum dots consisting
of four atoms sharing two electrons as a QNN.

with the time evolution of a quantum state,

ψ(r2, t2) =
∫ ∫

G(r1, t1,r2, t2)ψ(r1, t1)dr1dt1.

Here, G is a projection operator in position representation defined as
G = ∑

k
l=1 ψ l∗(r1, t1)ψ l(r2, t2), r1,r2 are position and t1, t2 time variables, and

{ψ l(r, t)} is a complete basis of the quantum system. G shows an intriguing analogy
to Hebb’s learning rule Eq. (4). Peruš also models a pattern recall through a collapse
of the wave function. A valid input state ψ is supposed to be almost orthogonal to all
memorised vectors (or basis states) ψ l except from one vector ψ j (l 6= j), so that G
applied to the input retrieves ψ j with a high probability |ψψ j|2. Peruš’ approach has
been further developed by ideas of interacting quantum dots presented below.

Shortly after Kak published his thoughts on quantum neural computation, Men-
neer and Narayanan introduced their version of a Quantum Inspired Neural Network
[41]. The basic idea, taken from the many-universe interpretation of quantum me-
chanics, is to look at a ‘superposition of networks’ each storing one pattern (instead
of one network storing several patterns). Such a ‘network quantum state is given by
its weight vector. Retrieving a pattern corresponds to the collapse of the superposition
of weight vectors and thus ???choosing??? one network which in turn retrieves the
desired result. Menneer and Narayanan describe a collapse mechanism that results in
choosing the one network whose stored pattern resembles the input pattern most.
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A largely unnoticed but nevertheless interesting QNN approach along the lines
of quantum measurements has been proposed by Zak and Williams [42]. The authors
try to find a quantum formalism that captures the two main properties of Hopfield
networks, dissipation and nonlinearity, by replacing the step- or sigmoid-activation-
function with a quantum measurement. Zak and Williams do not consider single neu-
rons as quantum objects, but introduce a unitary walk between the quantum network
basis states {|0, ...,0〉1 , ..., |1, ...,1〉2N}. The evolution maps the amplitude vector

a = (a1, ...,a2N ),

where ai is the amplitude of the quantum network basis state |x1, ...,xN〉i as given in
Eq. (6), onto a vector a′ by applying a unitary transformation U :

a′ =Ua

This is followed by a projective measurement σ , collapsing the superposition from
Eq. (6) onto one of the network basis states

(a1, ...,a2N ) → (01, ...,1i, ...,02N ),

with probability |ai|2. This map is “nonlinear, dissipative, and irreversible, and it
can play the role of a natural ‘quantum’ sigmoid function” σ [42]. The full network
dynamics in an update from timestep t to t +1 are consequently given by

a′t+1 = σ(Uat).

Here, the evolution matrix U is of dimension 2N ×2N and contains the probabilities
of transitions between network basis states |x1, ...,xN〉. The operation is required to
be unitary. The authors unfortunately do not give a derivation of U from a given
Hopfield network that shows its characteristic dynamics. A major problem in such
approaches is also the global coherence between the qurons. Even though Zak and
Williams remark that the coherence only has to be kept up between two measurement
processes for a sufficiently small time window ∆ t [51], the high dimension of
neural networks simulating brain functions make it a challenge to maintain global
coherence.

In summary, the idea to achieve the NN dynamics through quantum measure-
ments has been followed from different perspectives. However, the proposals all re-
main in the early stage of a suggestion and do not entail a fully developed QNN model
with the required dynamics. In this way they all fail to contain the Requirement (1)
from above, demanding the property of associative memory. However, the idea to use
quantum measurements to simulate the nonlinear convergence of associative memo-
ries seems to be the most mature solution to the dynamics incompatibility problem
encountered in the quest for a QNN model.
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4.2 Interacting quantum dots

Peruš’ notion of the formal similarity between the updating function and the evolution
of a quantum state was turned into a full QNN proposal by Elizabeth Behrman and
co-workers [52]. The Green function was reformulated by a Feynman path integral
which sums over all possible paths φ(t) propagating the system from φ 0 to φ

′

|ψ〉T,φ ′ =
∫

Dφ(t)exp{ i
h̄

∫ m
2

φ̇
2−V (φ , t)dt}|ψ〉0,φ0 .

Here, V describes the potential and m the mass in the quantum system. Instead of
different qurons, the network is realised by the propagation of one quron only. Its
state after each of N different time slices simulates the states of N virtual neurons.
The synaptic weights are then engineered by the interaction of the 2-level quron
with an environment. In other words, instead of updating the state of a neuron xi
,i ∈ {1, ...,N} , by the state of N − 1 others, the state of one neuron at time i∆ t
is – in different intensities– influenced by its state at times 0, ...,(i− 1)∆ t before.
Behrman et al. propose to implement this ‘time-array neural network’ through a
quantum dot molecule interacting with phonons of a surrounding lattice as well as an
external field that leads to a potential V (r). The network can be trained by a common
backpropagation rule, in which the ‘weights’ are corrected according to the output
error gradient.

Faber and Giraldi [44] discuss Behrman’s approach in the context of solving
the incompatibility problem between neural and quantum computing. They ask
the question of how the neural network’s nonlinear dynamics can be simulated
by a quantum system. As remarked by Behrman before, they work out that the
nonlinearity arises naturally in the time evolution of a quantum system through the
exponential function and the nonlinear kinetic energy that feeds into the potential
V (φ , t). However, Behrman and co-workers mention that for larger computations
than simple gates, including more advanced properties of Hopfield networks like
pattern recognition (and consequently also associative memory), a spatial-array
model is needed. Such a model, using N quantum dots has priorly been investigated
[43, 20, 44]. It shows remarkable features such as the computation of entanglement
or its own phase [53, 16], but has not yet been implemented as a quantum associative
memory device.

Behrman et al.’s proposal shows that the natural evolution of a system of inter-
acting quantum dots can serve as an quantum neural computer in that the desired
mapping of an input to an output can be engineered under certain conditions. In this
manner, any quantum system with an evolution dependent on the initial state and with
appropriate parameters is some kind of analog computing device for a given problem,
just as any input-dependent physical system can be seen as an analog computer. It is
therefore disputable if Requirement (2) is sufficiently met. Although being a natural
candidate for a QNN, the interactions between quantum systems still act very dif-
ferent to neural perceptrons, and to find the specific parameters that would lead to
dynamics corresponding to a fully functioning QNN is by no means trivial.
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4.3 Quantum neural circuits

Some authors view the problem to find a QNN from a quantum computing perspec-
tive. Their constructions of complex quantum circuits are inspired by the dynamics
of neural networks. For example, quantum circuits for qubits in which each quantum
computation operation executed by unitary operators Û is followed by a dissipative
operator D̂ were proposed [15]. These dissipative gates map the quantum state
amplitudes onto c ∈ C or 0, depending on whether it exceeds a threshold δ . The
operators D̂ consequently mimic the perceptron activation function. Unfortunately,
the authors do not give an example of a quantum system that could serve as such a
gate. Faber and Giraldi [44] suggest Behrman’s realisation of a QNN to serve as the
nonlinear dissipative operator D̂.

More recent approaches show only few similarities to neural network dynamics.
Panella and Martinelli [10] suggest general nonlinear quantum operators to construct
a feed-forward network in which qubits are successively entangled with one another.
Oliveira and Silva, together with their coworkers, develop a quantum logical neural
network model that is based on classical weightless neural networks in which neural
updating functions are stored in a table similar to a Random Access Memory on a
computer [19, 45, 54]. A binary input string would ‘address’ one of the registers and
lead to a certain output. This model contains the ability of NNs to be trained by a
learning algorithm, however it does not obtain the nonlinear convergence dynamics
of ordinary neural networks.

4.4 Quantum Associative Memory (QAM) models

Quantum Associative Memories are quantum computing algorithms that simulate the
property of associative memory without intending to use features of neural networks.
This means that upon initialisation with an input pattern, a QAM quantum circuit se-
lects the ‘closest’ memory pattern in terms of Hamming distance. Most contributions
in this category are based on Ventura and Martinez’ important proposal [47] (with
modifications [48, 49, 18]). The basic idea is to run a quantum algorithm on a a super-
position of all memorised states |M〉 that upon final measurement retrieves the desired
output state with a high probability. Let XP = {

∣∣∣x(1)1 , ...,x(1)N

〉
, ...,

∣∣∣x(P)1 , ...,x(P)N

〉
}

again be the P patterns to be stored in the QAM’. The memory superposition reads

|M〉= 1√
P

P

∑
p=1

∣∣∣x(p)
1 , ...,x(p)

N

〉
. (7)

An algorithm to create |M〉 is given in [48, 47], and a more efficient version has
more recently been introduced in [55]. A promising alternative would be to use the
Grover search algorithm to create the memory superposition [56]. Since the result is
probabilistic and the state ‘destroyed’ by measurement, it is necessary to construct a
number of duplicates of |M〉.
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The retrieval of a memorised state initially proposed by Ventura and Martinez is
based on Grover’s famous algorithm for the search of a pattern in a superposition of
a full basis [47]. Grover’s original algorithm has to be modified to work on the initial
state |M〉 as it only contains a selection of basis states. The resulting algorithm is able
to retrieve all patterns that contain a certain input sequence. Ventura and Martinez
consequently deal with the related problem of pattern completion rather than asso-
ciative memory. Trugenberger [48, 57] uses a promising approach to render Ventura
and Martinez’ pattern completion algorithm into associative memory. He finds an
evolution that writes the Hamming distance between the input state and each mem-
orised state into the phase of the memorised states. This is essentially realised by a
time evolution of |M〉 with the Hamiltonian

H =
n

∑
i=1

(σ3)i +1
2

.

Here σ3 is the third Pauli-matrix measuring the state of neuron xi, i∈ {1, ...,N}, in the
network state. A final measurement will then retrieve the patterns with a probability
depending on their Hamming distance to the input. Repeated measurements identify
the ‘closest’ pattern to the input state.

The main advantage of a Quantum Associative Memory compared to classical
Hopfield associative memory is the fact that it is theoretically able to store 2N

patterns into a qubit system of dimension 2n + 2 (whereof n + 2 qubits serve as
auxiliary units). Compared to the approximately 0.138 patterns storable in a Hopfield
network of N neurons, this is a major improvement. However, the requirements of
the algorithms proposed are still far beyond the status quo of current realisations
of quantum computing. In addition to that, QAMs are no QNN models in the strict
sense demanded here, since they are not based on neural network models and thus
fail to meet Requirement (2).

4.5 Quantum Perceptrons

The core of HNNs lies in its basic units that define how the state of a neuron is
calculated depending on inputs from other neurons. An important question when de-
veloping a QNN model is thus how a ‘Quantum Perceptron’ can be formulated. Two
proposals tackle this problem of describing perceptrons with a quantum formalism.
The first was Altaisky’s [14] introduction of a Quantum Perceptron. The perceptron
is modelled by the quantum updating function

|y(t)〉= F̂
m

∑
i=1

ŵiy(t) |xi〉 , (8)

with F̂ being an arbitrary quantum gate operator and ŵi j operators representing the
synaptic weights, both working on the m input qubits . The perceptron can be trained
by the quantum equivalent of a learning rule :

w jy(t +1) = w jy(t)+η(|d〉− |y(t)〉)〈xi| .
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Here |d〉 is the target state and |y(t)〉 the state of neuron y at the discrete time step t,
and η ∈ [0,1] the learning rate. Altaisky notes that this learning rule is by no means
unitary regarding the entries of the weight matrix w (for a proof see [54]). The update
would then fail to preserve the total probability of the system. A unitary learning rule
however would not mirror the dissipative nature of learning [14]. The author leaves
this conflict unresolved. Some authores take this model further and show how the
Quantum Perceptron is able to compute quantum gate operations like the Hadamard
[17] or C-NOT [58] transformation.

Siomau [50] recently introduced a very different model of a Quantum Perceptron
and tried to illustrate its powerful advantage of computing nonseparable problems3.
His version does not use a quantum neural update function, but projectors P= |ψ〉〈ψ|
with the property 〈ψ| x1 . . .xn〉 = |d|, d being the target output (the module | · | is
taken to avoid unphysical outputs). He claims that the XOR operation for example
can be computed by a two-input-neuron perceptron using the operator P = P−1 +P+1
with P−1 = |00〉〈00|+ |11〉〈11| and P+1 = |01〉〈01|+ |10〉〈10|. P−1 and P+1 are
orthogonal and complete, which ensures that all inputs are unambiguously classified.

These ideas of a Quantum Perceptron may be taken as an inspiration that the core
of a QNN lies in the construction of the basic units, which are Quantum Perceptrons.
However, Altaisky’s perceptron suffers from the lack of a definition of the Hilbert
space that describes his quantum states |xi〉. If (as defined here) the qurons each come
from different Hilbert spaces, the operation of Eq. (8) would be ill-defined, since a
quron is set equal to a sum of elements from other Hilbert spaces. Other definitions,
like the direct sum of neuron Hilbert spaces, however would not entail the quantum
property of superposition, and it would be difficult to maintain the claim of a ‘Quan-
tum Perceptron’. Siomau’s version also shows difficulties, since the operators P fail
to truly classify input states in a sense of writing information into the output state.

4.6 Other approaches to QNNs

Apart from these main branches of QNN research, there are a number of other ideas
worth mentioning. Weigang [59] (and later Segher and Metwally [60]) proposed a so
called ‘Entangled Neural Network’. His setup is a set of subunits that are quantum
teleportation devices [21] between two ‘neurons’ that are able to store, evolve and
measure quantum information. The output of a teleportation process of a subunit is
fed into the teleportation process of the next subunit. Weigang gives an example of
encoding certain properties into the qubit’s states, amplitudes and phases so that in
the end an optimisation function can be retrieved. Neigovzen et al. [61] use adiabatic
quantum computing to successively change the Hamiltonian of a quantum system of
a quantum object in a well potential into a NN-like Hamiltonian in which the memory
states are represented by several energy minima, such that the object ends up in the
closest minima to its initial state. A number of publications investigate fuzzy logic

3 A problem is linearly separable if the respective outputs in phase space can be devided by a hyper-
plane. Perceptrons can only compute linear separable problems.
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neural networks [62, 63, 11]. Worth mentioning is an example of a QNN interpreting
the synaptic weights as fuzzy variables updated by a fuzzy learning algorithm and
thereby create an associative memory very close to quantum mechanical concepts
[11]. Fuzzy QNNs received a fair amount of attention compared to other QNN
approaches, however, despite using the name ‘Quantum Neural Network’ they do not
respect quantum theory, but are inspired by a quron’s continous range of coefficients
in the interval [0,1].

Other efforts have tried to make use of the Ising-type energy function describ-
ing the network’s dynamics introduced above. Spin-glass models have been exten-
sively used in the 1980s to analyse the thermodynamic properties of Hopfield neural
networks [34, 35]. A widely recognised neurophysiological experiment on the sala-
mander cortex gives evidence to believe that ’real’ neurons are indeed connected by
pairwise correlation as in an Ising-type model [64]. Nishimori and Nonomura [65]
for example analyse a x− y quantum Ising model simulating a neural network. They
come to the conclusion that quantum fluctuations play the same role as thermal fluc-
tuations and are consequently not able to explain or influence the macroscopic firing
dynamics other than a classical model with nonzero temperature would do.

5 Discussion

This article reviewed the different approaches to find a Quantum Neural Network
model. It introduced into neural computing as well as quantum computing. The
incompatibility between the nonlinear, dissipative dynamics of the former and
the linear, unitary dynamics of coherent quantum computing was pointed out. A
framework for potential QNNs was established by introducing three requirements
regarding (1) the input-output relation of QNNs, (2) the foundation in neural
network theory and (3) the use of and consistency with quantum theory. Existing
proposals for QNNs were presented and evaluated against this framework.

As a conclusion, QNN research has not found a coherent approach yet and
none of the competing ideas can fully claim to be a QNN model according to the
requirements set here. The problem seems to lie in the above mentioned incompat-
ibility between both dynamics. Either the dissipative dynamics of NNs is exploited
to obtain the attractor-based feature of associative memory, which leads to a mere
superficial application of quantum theory as in fuzzy logic neural networks. Or, as in
most proposals, a quantum mechanical evolution is merely inspired by elements of
neural network theory, for example given in the ideas of interacting quantum dots,
neural quantum circuits or Quantum Associative Memory. The Quantum Perceptrons
and quantum measurement proposals seem to give a more comprehensive solution
to the problem, however, both fail to lead to the construction of a mature QNN model.

It seems to be vital to attempt the quest for a QNN from the stance of a more ad-
vanced formulation of quantum theory. A candidate for a quantum system simulating
a classical neural network’s attractor-like dynamics would need to contain at least
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two stable states that are obtained through dynamics highly dependend on the initial
conditions. Stable or equilibrium states are typical for dissipative quantum systems
interacting with an environment, so called open quantum systems [23]. Besides the
potential future developments of dissipative quantum computing [24] mentioned
above, an interesting perspective is given by the concept of Open Quantum Walks
[66, 67, 68]. Open Quantum Walks are a tool to describe evolutions of a system’s
‘external’ quantum state due to an internal degree of freedom interacting with an
environment. Their advantage compared to coherent Quantum Walks [69] that have
been recently applied to QNNs [70] is not only the inclusion of an environment, but
also the fact that no global coherence between the qurons is needed in order to exploit
quantum effects [42]. The output state, encoded in the internal degree of freedom
of the walker, can be furthermore read out without destruction of the coherence by
measuring the external degree of freedom [66]. However, Open Quantum Walks are
a fairly new tool and their dynamic properties and possible application to QNNs are
yet to be studied.

Dissipation described by open quantum systems is not only an important factor
to include to obtain the mathematical structure encountered in neural computing.
Although QNNs do not directly claim to be ‘quantum brain models’, they can be
understood as part of recent developments to find quantum effects that optimise bio-
logical processes [71]. Quantum biology, the new emerging field summarising these
efforts, deals with quantum systems strongly coupled to a biological environment
that induces decoherence and dissipation. If QNNs are supposed to be regarded as
investigations into potential quantum effects in biological neural networks beyond
computing devices, dissipative models including an environment will be necessary
to consider.
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