Skip to main content
Log in

Variable entangling in a quantum prisoner’s dilemma cellular automaton

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The effect of variable entangling on the dynamics of a spatial quantum formulation of the iterated prisoner’s dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The effect of spatial structure is assessed when allowing the players to adopt quantum and classical strategies, both in the two- and three-parameter strategy spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Cellular automata are spatially extended dynamical systems that are discrete in all their constitutional components: space, time and state-variable. Uniform, local and synchronous interactions, as assumed here, are landmark features of CA [34].

  2. Provided that \(P-S \le \mathfrak {T}-R\), the critical values are to be: \(\gamma ^*= \arcsin \big (\sqrt{\displaystyle \frac{P-S}{\mathfrak {T}-S}}\big )\), and \(\gamma ^+= \arcsin \big (\sqrt{\displaystyle \frac{\mathfrak {T}-R}{\mathfrak {T}-S}}\big )\). Thus, (0.524,0.785) with the (5,3,2,1)-PD parameters, and \(\gamma ^*=\gamma ^+=0.616\) with the (4,3,2,1)-PD parameters.

  3. The reference [14] is also relevant in this respect, but the occasional reader should be warned about the variation of the \(\alpha \) and \(\beta \) parameters in the \([-\pi ,\pi ]\) interval instead of in \([0,\pi /2]\), as proposed for \(\alpha \) in the seminal EWL paper.

References

  1. Alonso-Sanz, R.: A quantum prisoner’s dilemma cellular automaton. Proc. R. Soc. A 470, 20130793 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. Alonso-Sanz, R.: On a three-parameter quantum battle of the sexes cellular automaton. Quantum Inf. Process. 12(5), 1835–1850 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Alonso-Sanz, R.: A quantum battle of the sexes cellular automaton. Proc. R. Soc. A 468, 3370–3383 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  4. Alonso-Sanz, R.: Dynamical Systems with Memory. World Scientific Pub., Singapore (2011)

    Google Scholar 

  5. Benjamin, S.C., Hayden, P.M.: Comment on “quantum games and quantum strategies”. Phys. Rev. Lett. 87(6), 069801 (2001)

    Article  ADS  Google Scholar 

  6. Binmore, K.: Fun and Games. D.C.Heath, Lexington (1992)

    MATH  Google Scholar 

  7. Bleiler, S. : A Formalism for Quantum Games and an Application. http://arxiv.org/abs/0808.1389 (2008)

  8. Branderburger, A.: The relationship between quantum and classical correlation games. Games Econ. Behav. 89, 157–183 (2010)

    Google Scholar 

  9. Du, J.F., Xu, X.D., Li, H., Zhou, X., Han, R., et al.: Entanglement playing a dominating role in quantum games. Phys. Lett. A 289(1–2), 9–15 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Du, J.F., Li, H., Xu, X.D., Zhou, X., Han, R.: Phase-transition-like behaviour of quantum games. J. Phys. A Math. Gen. 36(23), 6551–6562 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Du, J.F., Xu, X.D., Li, H., Zhou, X., Han, R.: Entanglement enhanced multiplayer quantum games. Phys. Lett. A 302, 222–233 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077–3080 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47(14–15), 2543–2556 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Flitney, A.P., Hollenberg, L.C.L.: Nash equilibria in quantum games with generalized two-parameter strategies. Phys. Lett. A 363, 381–388 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Flitney, A.P., Abbott, D.: Advantage of a quantum player over a classical one in 2x2 quantum games. Proc. R. Soc. Lond. A 459(2038), 2463–2474 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Flitney A.P., Abbott, D.: An introduction to quantum game theory. Fluct. Noise Lett. 02, R175. http://arxiv.org/pdf/quant-ph/0208069 (2002)

  17. Khan, F.S., Phoenix, S.J.D.: Gaming the quantum. Quantum Inf. Comput. 13(3–4), 231–244. http://arxiv.org/pdf/1202.1142 (2013)

  18. Landsburg, S.E.: Quantum game theory. In: The Wiley Encyclopedia of Operations Research and Management Science. http://arxiv.org/pdf/1110.6237v1 (2011)

  19. Landsburg, S.E.: Quantum game theory. Not. AMS. http://www.ams.org/notices/200404/fea-landsburg (2004)

  20. Levine, D.K. : Quantum Games Have No News for Economists. http://levine.sscnet.ucla.edu/papers/quantumnonews (2005)

  21. Li, Q., Iqbal, A., Perc, M., Chen, M., Abbott, D.: Coevolution of quantum and classical strategies on evolving random networks. PloS One 8(7), e68423 (2013)

    Article  ADS  Google Scholar 

  22. Li, Q., Iqbal, A., Chen, M., Abbott, D.: Quantum strategies win in a defector-dominated population. Physica A 391, 3316–3322 (2012)

    Article  ADS  Google Scholar 

  23. Li, Q., Iqbal, A., Chen, M., Abbott, D.: Evolution of quantum and classical strategies on networks by group interactions. New J. Phys. 14(10), 103034 (2012)

    Article  MathSciNet  Google Scholar 

  24. Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Miszczak, J.A., Pawela, L., Sladkowski, J. : General model for an entanglement-enhanced composed quantum game on a two-dimensional lattice. Fluct. Noise Lett. 13(2), 1450012. http://arxiv.org/abs/1306.4506 (2014)

  27. Nawaz, A., Toor, A.H.: Dilemma and quantum battle of sexes. J. Phys. A Math. Gen. 37(15), 4437–4443 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Nawaz, A., Toor, A.H.: Generalized quantization scheme for two-person non-zero sum games. J. Phys. A Math. Gen. 37(42), 365305 (2004)

    Google Scholar 

  29. Nowak, N.M., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)

    Article  ADS  Google Scholar 

  30. Nowak, M.A., May, R.M.: The spatial dilemmas of evolution. Int. J. Bifurc. Chaos 3(11), 35–78 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  31. Owen, G.: Game Theory. Academic Press, Waltham (1995)

    MATH  Google Scholar 

  32. Phoenix, S.J.D., Khan, F.S.: The role of correlations in classical and quantum games. Fluct. Noise Lett. 12(3), 1350011 (2013)

    Article  Google Scholar 

  33. Piotrowski, E.W., Sladkowski, J.: An invitation to quantum game theory. Int. J. Theor. Phys. 42(5), 1089–1099 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schiff, J.L.: Cellular Automata: A Discrete View of the World. Wiley, New York (2008)

    Google Scholar 

  35. Wiesner, K.: Quantum Cellular automata. Encycl. Complex. Syst. Sci., 7154–7164. http://arxiv.org/abs/0808.0679 (2009)

Download references

Acknowledgments

This work was supported by the Spanish Grant M2012-39101-C02-01. Part of the computations of this work were performed in EOLO and FISWULF, HPC machines of the International Campus of Excellence of Moncloa, funded by the Spanish Government and Feder Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Alonso-Sanz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-Sanz, R. Variable entangling in a quantum prisoner’s dilemma cellular automaton. Quantum Inf Process 14, 147–164 (2015). https://doi.org/10.1007/s11128-014-0834-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0834-7

Keywords

Navigation