Skip to main content
Log in

Quantum image scaling using nearest neighbor interpolation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Although image scaling algorithms in classical image processing have been extensively studied and widely used as basic image transformation methods, the quantum versions do not exist. Therefore, this paper proposes quantum algorithms and circuits to realize the quantum image scaling based on the improved novel enhanced quantum representation (INEQR) for quantum images. It is necessary to use interpolation in image scaling because there is an increase or a decrease in the number of pixels. The interpolation method used in this paper is nearest neighbor which is simple and easy to realize. First, NEQR is improved into INEQR to represent images sized \(2^{n_{1}} \times 2^{n_{2}}\). Based on it, quantum circuits for image scaling using nearest neighbor interpolation from \(2^{n_{1}} \times 2^{n_{2}}\) to \(2^{m_{1}} \times 2^{m_{2}}\) are proposed. It is the first time to give the quantum image processing method that changes the size of an image. The quantum strategies developed in this paper initiate the research about quantum image scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003)

  2. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(12), 2833–2860 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Li, H.S., Zhu, Q., Song, L., et al.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(9), 2269–2290 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformation on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MATH  MathSciNet  Google Scholar 

  6. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  MATH  Google Scholar 

  8. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  10. Fijany, A., Williams, C.: Quantum Wavelet Transform: Fast Algorithm and Complete Circuits. arXiv:quantph/9809004 (1998)

  11. Klappenecker, A., Roetteler, M.: Discrete cosine transforms on quantum computers. In: IEEER8-EURASIP Symposium on Image and Signal Processing and Analysis (ISPA01), Pula, Croatia, pp. 464–468 (2001)

  12. Tseng, C., Hwang, T.: Quantum circuit design of \(8\times 8\) discrete cosine transforms using its fast computation flow graph. In: IEEE International Symposium on Circuits and Systems, pp. 828–831 (2005)

  13. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing (1996)

  14. Zhou, R.G., Wang, H., Wu, Q., Yang, S.: Quantum associative neural network with nonlinear search algorithm. Int. J. Theor. Phys. 51(3), 705–723 (2012)

    Article  MATH  Google Scholar 

  15. Pan, C.Y., Zhou, R.G., Ding, C.B., Hu, B.Q.: Quantum search algorithm for set operation. Quantum Inf. Process. 12(1), 481–492 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zhou, R.G., Cao, J.: Quantum novel genetic algorithm based on parallel subpopulation computing and its application. Artif. Intell. Rev. 41(3), 359–371 (2014)

    Article  MathSciNet  Google Scholar 

  17. Li, Y., Sha, X.J., Wei, D.Y.: Image scaling algorithm using multichannel sampling in the linear canonical transform domain. Signal Image Video Process. 8(2), 197–204 (2014)

    Article  Google Scholar 

  18. Fedorov, D.A.: Image-scaling method with an integral factor based on wavelet transformation. J. Opt. Technol. 80(3), 166–170 (2013)

    Article  Google Scholar 

  19. Chen, P.Y., Lien, C.Y., Lu, C.P.: VLSI implementation of an edge-oriented image scaling processor. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 17(9), 1275–1284 (2009)

  20. Huang, Z.H., Leng, J.S.: Analysis of Hu’s moment invariants on image scaling and rotation. In: IEEE 2nd International Conference on Computer Engineering and Technology (ICCET), vol. 7, pp. 476–480 (2010)

  21. Frucci, M., Arcelli, C., di Baja, G.S.: An automatic image scaling up algorithm. In: Lecture Notes in Computer Science of Pattern Recognition, vol. 7329, pp. 35–44 (2012)

  22. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, New Jersey (2007)

    Google Scholar 

  23. Parker, J.A., Kenyon, R.V., Troxel, D.E.: Comparison of interpolating methods for image resampling. IEEE Trans. Med. Imaging 2(1), 31–39 (1983)

    Article  Google Scholar 

  24. http://www.mathworks.cn/cn/help/images/ref/imresize.html (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Jiang.

Additional information

This work is supported by the Beijing Municipal Education Commission Science and Technology Development Plan under Grant No. KM201310005021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Wang, L. Quantum image scaling using nearest neighbor interpolation. Quantum Inf Process 14, 1559–1571 (2015). https://doi.org/10.1007/s11128-014-0841-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0841-8

Keywords

Navigation