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Abstract

We study quantum correlation of Greenberger-Horne-Zeilinger (GHZ) and W states under var-

ious noisy channels using measurement-induced disturbance approach and its optimized version.

Although these inequivalent maximal entangled states represent the same quantum correlation in

the absence of noise, it is shown that the W state is more robust than the GHZ state through most

noisy channels. Also, using measurement-induced disturbance measure, we obtain the analytical re-

lations for the time evolution of quantum correlations in terms of the noisy parameter κ and remove

its overestimating quantum correlations upon implementing the ameliorated measurement-induced

disturbance.
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I. INTRODUCTION

Quantification of correlations in bipartite quantum systems is one of the important prob-

lems in quantum information. Quantum correlations can be considered as the resources

for quantum information processes [1]. Initially, it was assumed that entanglement which

plays an important role in quantum computing and quantum information processing, is

the only kind of nonclassical correlation in a quantum state. This issue has been widely

studied in the last decade and various entanglement measures have been introduced to mea-

sure entanglement such as entanglement of formation, entanglement of cost, relative entropy

entanglement, and negativity.

Indeed, entanglement is not the only responsible correlation for the quantum bypassing

classical regimes and there exists some quantum correlations other than entanglement which

result in the quantum effects in quantum information processes. For instance, Bennett et

al. showed the possibility of quantum nonlocality without entanglement [2]. Also, it is

shown that separable states can be used for quantum speedup [3–6]. In order to quantify

the quantumness of correlations in bipartite states, it has been proposed several measures

such as quantum discord [7], quantum deficit [8–10], quantumness of correlations [11], and

quantum dissonance [12].

In particular, quantum discord which historically is the first introduced measure for the

nonclassicality based on the Openheim-Horodecki paradigm, has attracted much attention

in recent years [13–17]. It is based on the difference between two quantum extensions of

classically equivalent concepts namely the mutual information. Although quantum discord

has a simple definition, its explicit evaluation is hard to perform in practice especially for

multi-qubit states and is often only given by numerical methods. However, some analytical

expression of quantum discord for two-qubit states are presented in Refs. [18–22].

It is known that since some separable states still have quantum correlations, these cor-

relations with quantum nature are more general than entanglement. In particular, Luo [23]

introduced a quantum-classical classification based on measurement-induced disturbance

(MID) to characterize statistical correlations in bipartite states. In this scenario, classical

states are classified in terms of nondisturbance under quantum measurement. However,

quantum systems and thus quantum correlations are disturbed under generic measurements

and the magnitude of the disturbance can be considered as a measure to characterize the
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quantumness of states. Recently, Girolami et al. showed that the quantum discord due

to its asymmetric definition does not properly determine the distinction between classical-

classical and classical-quantum states and thus it is not strongly faithful. Also, by character-

izing quantum correlations in the paradigmatic instance of two-qubit states, they observed

that MID overstimates quantum correlations so that for some classical states we obtain

nonzero correlation. They therefore proposed an ameliorated measurement-induced distur-

bance (AMID) as a quantifier of quantum correlations [24].

The aim of this paper is to characterize and quantify the quantum correlation for bipartite

systems which are initially prepared in three-qubit Greenberger-Horne-Zeilinger (GHZ) [25]

|GHZ〉 = |000〉+ |111〉√
2

, (1)

and W [26, 27]

|W 〉 = |100〉+ |010〉+
√
2|001〉

2
, (2)

states under various noisy channels where the first two qubits belong to party a and the

third qubit belongs to party b. It is shown that this class of W states can be used for perfect

teleportation, superdense coding, and as an entanglement resource [27]. This state belongs

to the category of W states

|Wn〉 =
|100〉+√

neiγ |010〉+
√
n+ 1eiδ|001〉√

2 + 2n
, (3)

where n is a real number, δ and γ are phases, and reduces to |W 〉 for n = 1 and zero phases.

Then, the initial states are affected by noisy channels which results in decreasing of the

quantumness of states. We quantify the quantum correlations for the initial GHZ and W

states in the presence of noise and investigate the robustness of these states under different

kinds of noise. The rest of this paper is organized as follows. In Sec. II, we characterize

quantum correlations using MID and AMID approaches. Secs. III and IV are devoted to

determine quantum correlations for the GHZ and W states, respectively. We present our

conclusions in Sec. V.
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II. CLASSIFYING BIPARTITE STATES USING AMELIORATED

MEASUREMENT-INDUCED DISTURBANCE

Consider a bipartite state ρ for a system with two parties a and b. Based on measurement-

induced disturbance, the quantum correlations of ρ, that is denoted by M(ρab), is given by

[23]

M(ρab) = I(ρab)− I(Π(ρab)), (4)

where I(ρab) = S(ρa) + S(ρb) − S(ρab) is quantum mutual information that quantifies the

total correlation between a and b, and

Π(ρ) =
∑

ij

(Πa,i ⊗Πb,j) ρ (Πa,i ⊗Πb,j), (5)

in which {Πa,i} and {Πb,j} are complete projective measurements for parties a and b, respec-

tively. They are obtained from the spectral decomposition of the reduced states, namely

ρa =
∑

i pa,iΠa,i and ρ
b =

∑

j pb,jΠb,j . We can rewrite Eq. (4) as

M(ρab) = S(Π(ρab))− S(ρab) +
∑

i

(S(ρxi)− S(Π(ρxi)) (6)

where xi ∈ {a, b}. Note that if Π(ρ) = ρ, we conclude ρ is not perturbed with respect to local

measurement Πa,i⊗Πb,j, therefore ρ is a classical state. Otherwise, it is a quantum state and

possesses quantum correlation. For our case, since party a has two qubits, it is convenient to

write Eq. (5) as Π(ρ) =
∑

ijk(Πa,ij ⊗Πb,k) ρ (Πa,ij ⊗Πb,k). Also, we define Π
n
= Πa,ij ⊗Πb,k

so that the projective measurements satisfy Π
n
Π

n
′ = δ

nn
′Π

n
and

∑

n
Π

n
= 1.

According to AMID, Eq. (6) needs to optimize over any possible set of local projectors

so that projective measurement in this equation, which we represent by Ω instead of Π,

includes arbitrary complete projective measurements that are not necessarily obtained from

eigen-projectors. Therefore, the quantum correlation which is denoted by A(ρab), is given

by [24]

A(ρab) = inf
Ω

[

S(Ω(ρab))− S(ρab) +
∑

i

(S(ρxi)− S(Ω(ρxi))

]

, (7)

in which

Ω(ρ) =
∑

ij

(Ωa,i ⊗ Ωb,j) ρ (Ωa,i ⊗ Ωb,j), (8)

Ωj,k = UjΠj,kU
†
j , and Uj = yj,0I + i~yj .~σj is a unitary matrix obeys

∑3
p=0 y

2
j,p = 1, yj,p ∈

[−1, 1].
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The evolution of the quantum system ρ in the presence of noise is given by the master

equation in the Lindblad form [28]

∂ρ

∂t
= − i

h̄
[HS, ρ] +

∑

i,α

(

Li,αρL
†
i,α − 1

2

{

L
†
i,αLi,α, ρ

}

)

, (9)

in which the effect of noise is presented by the Lindblad operator Li,α that acts on the ith

qubit, α determines the type of the noise, and HS is the Hamiltonian of the system. In

Ref. [29], the authors studied analytic solutions of the Lindblad equation for GHZ and W

states under various noises for HS = 0 and same axis Pauli noises by taking Li,α =
√
κi,ασ

(i)
α

where σ
(i)
α denotes Pauli noises that act on the ith qubit and κ is the decoherence rate. The

time evolution of multi-qubit GHZ states in the presence of noise is studied analytically in

Ref. [30].

III. QUANTUMNESS OF CORRELATION FOR GHZ STATE

In this section, we study analytically the evolution of GHZ state under various noisy

channels and obtain corresponding quantum correlations using the measurement-induced

disturbance approach. Also, we numerically obtain quantum correlations using AMID which

does not suffer from overestimating quantum correlations of MID approach. The noises under

investigations are the same axis Pauli noises and the isotropic noise.

First, consider the time evolution of GHZ state in the presence of the Pauli-X noise. For

this case the solution of the Lindblad equation reads [29]

ρxGHZ(t) =
1

8







































α+ 0 0 0 0 0 0 α+

0 α− 0 0 0 0 α− 0

0 0 α− 0 0 α− 0 0

0 0 0 α− α− 0 0 0

0 0 0 α− α− 0 0 0

0 0 α− 0 0 α− 0 0

0 α− 0 0 0 0 α− 0

α+ 0 0 0 0 0 0 α+







































, (10)

where, α+ = 1 + 3e−4κt and α− = 1− e−4κt.
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The reduced density matrices (ρxGHZ)
a and (ρxGHZ)

b are found by tracing out the third

qubit and the first two qubits, respectively,

(ρxGHZ)
a =

1

8















α+ + α− 0 0 0

0 2α− 0 0

0 0 2α− 0

0 0 0 α+ + α−















, (ρxGHZ)
b =

α+ + 3α−

8
I. (11)

Thus, the projective measurements are given by Πa,ij = |ij〉〈ij|, Πb,k = |k〉〈k|, and Π(ρxGHZ)

reads

Π(ρxGHZ) =
1

8







































α+ 0 0 0 0 0 0 0

0 α− 0 0 0 0 0 0

0 0 α− 0 0 0 0 0

0 0 0 α− 0 0 0 0

0 0 0 0 α− 0 0 0

0 0 0 0 0 α− 0 0

0 0 0 0 0 0 α− 0

0 0 0 0 0 0 0 α+







































. (12)

Since [Π(ρxGHZ)]
a = ρa and [Π(ρxGHZ)]

b = ρb the third term in Eq. (6) vanishes and we only

need to evaluate S(ρxGHZ) and S(Π(ρ
x
GHZ)), namely

S(ρxGHZ) = 2− α+

4
log2(α+)−

3α−

4
log2(α−), (13)

and

S(Π(ρxGHZ)) = 3− α+

4
log2(α+)−

3α−

4
log2(α−). (14)

Therefore, the quantum correlation of ρxGHZ is given by

M(ρxGHZ) = 1. (15)

Now, in order to obtain quantum correlations by AMID, we need to evaluate Eq. (7)

for the density matrix ρxGHZ(t) (10). For this purpose, first we construct the unitary

matrices Uj by choosing yj,0 = cosψj , yj,1 = sinψj cos θj , yj,2 = sinψj sin θj sinφj,

yj,3 = sinψj sin θj cos φj that satisfy
∑3

p=0 y
2
j,p = 1. Then, we find Ω(ρ) and obtain the
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corresponding von-Neumann entropies in Eq. (7). Thus, the quantum correlation is found

as a function of nine parameters and time, i.e., A(θ1, φ1, ψ1, θ2, φ2, ψ2, θ3, φ3, ψ3, κt). Now,

the optimization program over these nine parameters gives rise to AMID. For this case, we

have A = A(1.3, 4.43, 2.31, 1.3, 4.43, 2.31, 1.3, 4.43, 2.31, κt) which is depicted in Fig. 1 (green

line). As the figure shows, although M = 1 for all times in presence of a bit-flip noise, the

AMID represents dissipative behavior for the quantum correlation.

For the Pauli-Y noise the density matrix reads [29]

ρ
y
GHZ(t) =

1

8







































α+ 0 0 0 0 0 0 β1

0 α− 0 0 0 0 −β2 0

0 0 α− 0 0 −β2 0 0

0 0 0 α− −β2 0 0 0

0 0 0 −β2 α− 0 0 0

0 0 −β2 0 0 α− 0 0

0 −β2 0 0 0 0 α− 0

β1 0 0 0 0 0 0 α+







































, (16)

where β1 = 3e−2κt + e−6κt and β2 = e−2κt − e−6κt.

It is straightforward to check that the reduced density matrices, the projective measure-

ments, and Π(ρyGHZ) are similar to the previous case. So, to obtainM(ρyGHZ) we only require

to evaluate S(ρyGHZ) as

S(ρyGHZ) = 3 − α+ − β1

8
log2(α+ − β1)−

α+ + β1

8
log2(α+ + β1)

− 3
α− − β2

8
log2(α− − β2)− 3

α− + β2

8
log2(α− + β2). (17)

Now, the quantum correlation is

M(ρyGHZ) =
α+ − β1

8
log2(α+ − β1) +

α+ + β1

8
log2(α+ + β1)

+3
α− − β2

8
log2(α− − β2) + 3

α− + β2

8
log2(α− + β2)

−α+

4
log2(α+)− 3

α−

4
log2(α−). (18)

The optimization procedure based on AMID shows that for this case the quantum correlation

calculated by both measures coincide, i.e., A = M.

For the Pauli-Z noise, GHZ state under the noisy channel is described by [29]

ρzGHZ(t) =
1

2
(|000〉〈000|+ |111〉〈111|) + 1

2
e−6κt (|000〉〈111|+ |111〉〈000|) , (19)
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and the reduced density matrices are

(ρzGHZ)
a =

1

2
(|00〉〈00|+ |11〉〈11|) , (ρzGHZ)

b =
1

2
I. (20)

The projective measurements are similar to the previous cases and

Π(ρzGHZ) =
1

2
(|000〉〈000|+ |111〉〈111|) , (21)

which results in the unity of the corresponding von-Neumann entropy, i.e., S(Π(ρzGHZ)) =

1. Tracing out the third qubit and the first two qubits leads to Eqs. (20). So, we have

S((ρzGHZ)
xi)− S(Π(ρzGHZ)

xi) = 0 with xi ∈ {a, b} and the third term in Eq. (6) vanishes.

Now, in order to evaluate the quantum correlation, we find the von-Neumann entropy of

ρzGHZ

S(ρzGHZ) = 1− 1− e−6κt

2
log2(1− e−6κt)− 1 + e−6κt

2
log2(1 + e−6κt), (22)

which results in

M(ρzGHZ) =
1− e−6κt

2
log2(1− e−6κt) +

1 + e−6κt

2
log2(1 + e−6κt). (23)

Applying unitary matrices on the projective bases to get the local projective measurements

and computing the von-Neumann entropies of Eq. (7) result in A. It is found that the

obtained optimized quantum correlation agrees with M(ρzGHZ).

For the last case in this section, we investigate the GHZ state which is affected by the

isotropic noise. Its density matrix is given by [29]

ρdGHZ(t) =
1

8







































α̃+ 0 0 0 0 0 0 γ

0 α̃− 0 0 0 0 0 0

0 0 α̃− 0 0 0 0 0

0 0 0 α̃− 0 0 0 0

0 0 0 0 α̃− 0 0 0

0 0 0 0 0 α̃− 0 0

0 0 0 0 0 0 α̃− 0

γ 0 0 0 0 0 0 α̃+







































, (24)

where α̃+ = 1 + 3e−8κt, α̃− = 1 − e−8κt and γ = 4e−12κt. The reduced density matrices for
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the subsystems a and b are

(ρdGHZ)
a =

1

8















α̃+ + α̃− 0 0 0

0 α̃− 0 0

0 0 α̃− 0

0 0 0 α̃+ + α̃−















, (ρdGHZ)
b =

α̃+ + 3α̃−

8
I. (25)

Thus, the projective measurements are again given by Πa,ij = |ij〉〈ij|, Πb,k = |k〉〈k|, and we

find

Π(ρdGHZ) =
1

8







































α̃+ 0 0 0 0 0 0 0

0 α̃− 0 0 0 0 0 0

0 0 α̃− 0 0 0 0 0

0 0 0 α̃− 0 0 0 0

0 0 0 0 α̃− 0 0 0

0 0 0 0 0 α̃− 0 0

0 0 0 0 0 0 α̃− 0

0 0 0 0 0 0 0 α̃+







































, (26)

which results in
[

Π(ρdGHZ)
]a

= (ρdGHZ)
a and

[

Π(ρdGHZ)
]b

= (ρdGHZ)
b. Therefore,

S((ρdGHZ)
xi)− S(Π(ρdGHZ)

xi) = 0 and Eq. (6) reduces to

M(ρdGHZ) = S(Π(ρdGHZ))− S(ρdGHZ). (27)

The von-Neumann entropies are given by

S(ρdGHZ) = 3− 3
α̃−

4
log2(α̃−)−

α̃+ − γ

8
log2(α̃+ − γ)− α̃+ + γ

8
log2(α̃+ + γ), (28)

and

S(Π(ρdGHZ)) = 3− α̃+

4
log2(α̃+)−

3α̃−

4
log2(α̃−). (29)

So, the quantum correlation reads

M(ρdGHZ) =
α̃+ + γ

8
log2(α̃+ + γ) +

α̃+ − γ

8
log2(α̃+ − γ)− α̃+

4
log2(α+). (30)

Similar to the previous case, the quantum correlation obtained by AMID coincides with one

obtained by MID for all times.
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FIG. 1: Quantum correlation evaluated by MID and AMID for the three-qubit system with the

initial GHZ state as a function of κt transmitted through various noisy channels: Pauli-X by MID

(brown line), Pauli-X by AMID (green line), Pauli-Y by MID and AMID (blue line), Pauli-Z by

MID and AMID (red line), and isotropic by MID and AMID (black line).

In Fig. 1 we have depicted the quantum correlation obtained by MID and AMID for GHZ

state in the presence of various noisy channels. As the figure shows, quantum correlations for

all noises, except Pauli-X noise, coincide for both measures. MID overestimates quantum

correlation for Pauli-X channel with respect to AMID measure. Note that, for the GHZ

state M(ρ) for all noises that are studied in this contribution agrees with the corresponding

asymmetric quantum discord [31].

IV. QUANTUMNESS OF CORRELATION FOR W STATE

In this section, we determine quantum correlation using MID and AMID for a bipartite

state which is initially prepared in the form of W state under various noise channels. The

first two qubits belong to party a and the third qubit belongs to party b.

In the presence of the Pauli-X noise, the time evolution of the density matrix of W state
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is given by [29]

ρxW (t) =
1

16







































2α2 0 0
√
2α2 0

√
2α2 α2 0

0 2α1

√
2α1 0

√
2α1 0 0 α3

0
√
2α1 2β+ 0 α1 0 0

√
2α3

√
2α2 0 0 2β− 0 α4

√
2α4 0

0
√
2α1 α1 0 2β+ 0 0

√
2α3

√
2α2 0 0 α4 0 2β−

√
2α4 0

α2 0 0
√
2α4 0

√
2α4 2α4 0

0 α3

√
2α3 0

√
2α3 0 0 2α3







































, (31)

where







































α1 = 1 + e−2κt + e−4κt + e−6κt,

α2 = 1 + e−2κt − e−4κt − e−6κt,

α3 = 1− e−2κt − e−4κt + e−6κt,

α4 = 1− e−2κt + e−4κt − e−6κt,

β± = 1± e−6κt.

(32)

The projective measurements are found using the reduced density matrices

(ρxW )a =
1

16















2(α1 + α2) 0 0 α2 + α3

0 2(β+ + β−) α1 + α4 0

0 α1 + α4 2(β+ + β−) 0

α2 + α3 0 0 2(α3 + α4)















, (ρxW )b =
I

2
, (33)

which results in



























Πa,00 =
1
2
(|01〉+ 〈10|)(〈01|+ 〈10|),

Πa,11 =
1
2
(|01〉 − 〈10|)(〈01| − 〈10|),

Πa,01 =
1

2(1+e4κt)
((1− e2κt)2|00〉〈00|+ (1− e4κt)|11〉〈11|) ,

Πa,10 =
1

2(1+e4κt)
((1 + e2κt)2|00〉〈00| − (1− e4κt)|11〉〈11|) ,

(34)
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and Πb,i = |i〉〈i|. So we have

Π(ρxW ) =







































γ1 0 0 0 0 0 η1 0

0 γ2 0 0 0 0 0 η2

0 0 2β+ 0 α1 0 0 0

0 0 0 2β− 0 α4 0 0

0 0 α1 0 2β+ 0 0 0

0 0 0 α4 0 2β− 0 0

η1 0 0 0 0 0 γ3 0

0 η2 0 0 0 0 0 γ4







































, (35)

where






















































γ1 =
2eκt cosh(κt)2 sinh(κt)(2−cosh(2κt)+cosh(4κt)+sinh(2κt))

(1+e4κt)2
,

γ2 =
1+e−6κt+ 8

(1+e4κt)2
+2e−3κt sinh(κt)

8
,

γ3 =
1−e−6κt+ 8

(1+e4κt)2
−2e−3κt cosh(κt)

8
,

γ4 =
2eκt cosh(κt) sinh(κt)2(2+cosh(2κt)+cosh(4κt)−sinh(2κt))

(1+e4κt)2
,

η1 =
eκt sinh(κt) sinh(2κt)(2+2 sinh(2κt)+sinh(4κt))

2(1+e4κt)2
,

η2 =
eκt cosh(κt)2 sinh(κt)(2−2 sinh(2κt)+sinh(4κt))

(1+e4κt)2
.

(36)

Since [Π(ρxW )]a = (ρxW )a and [Π(ρxW )]b = (ρxW )b, the third term of Eq. (6) vanishes and we

obtain

M(ρxW ) = S(Π(ρxW ))− S(ρxW ). (37)

Now, the quantum correlation can be evaluated numerically which is depicted in Fig. 2.

The numerical optimization program for the nine parameters that is inherent in AMID

approach gives rise to the following nonclassical correlation

A =

{A(2.23, 0, 1.1, 1.1, 0, 1.1, 1.1, 0, 1.1, κt),

A(2.2, 2.3, 2.2, 2.2, 2.3, 2.2, 2.2, 2.3, 2.2, κt),

0 < κt < 0.06,

κt > 0.06,
(38)

which is depicted in Fig. 2 as a green line.

12



For the Pauli-Y noise the density matrix reads [29]

ρ
y
W (t) =

1

16







































2α2 0 0 −
√
2α2 0 −

√
2α2 −α2 0

0 2α1

√
2α1 0

√
2α1 0 0 −α3

0
√
2α1 2β+ 0 α1 0 0 −

√
2α3

−
√
2α2 0 0 2β− 0 α4

√
2α4 0

0
√
2α1 α1 0 2β+ 0 0 −

√
2α3

−
√
2α2 0 0 α4 0 2β−

√
2α4 0

−α2 0 0
√
2α4 0

√
2α4 2α4 0

0 −α3 −
√
2α3 0 −

√
2α3 0 0 2α3







































. (39)

For this case the results are identical with the previous case. Therefore, the time evolution

of M for the initial W state under Pauli-Y noise coincides with M(ρxW ) (see Fig. 2). Also,

the evolution of quantum correlation computed by AMID results in

A =

{A(1.57, 1.57, 1.57, 1.57, 1.57, 1.57, 1.57, 1.57, 1.57, κt)

A(1.57, 2.22, 1.57, 1.57, 2.22, 1.57, 1.57, 2.22, 1.57, κt)

0 < κt < 0.03

κt > 0.03,
(40)

which is shown in Fig. 2 as a blue line.

To this end, consider the effects of the Pauli-Z noise on W state [29]

ρzW (t) =
1

4







































0 0 0 0 0 0 0 0

0 2
√
2e−4κt 0

√
2e−4κt 0 0 0

0
√
2e−4κt 1 0 e−4κt 0 0 0

0 0 0 0 0 0 0 0

0
√
2e−4κt e−4κt 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0







































. (41)

So, the reduced density matrices for the subsystems are

(ρzW )a =
1

4















2 0 0 0

0 1 e−4κt 0

0 e−4κt 1 0

0 0 0 0















, (ρzW )b =
I

2
, (42)
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which result in


























Πa,00 = |00〉〈00|,
Πa,11 = |11〉〈11|,
Πa,01 =

1
2
(|01〉+ 〈10|)(〈01|+ 〈10|),

Πa,10 =
1
2
(|01〉 − 〈10|)(〈01| − 〈10|),

(43)

and Πb,i = |i〉〈i|. Using the projective measurements we find

Π(ρzW ) =
1

4







































0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 1 0 e−4κt 0 0 0

0 0 0 0 0 0 0 0

0 0 e−4κt 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0







































, (44)

and [Π(ρzW )]a = (ρzW )a and [Π(ρzW )]b = (ρzW )b. Therefore, we only need to obtain the

following von-Neumann entropies

S(ρzW ) =
1

4
(11 + e−4κt)− 1

4
(1− e−4κt) log2(1− e−4κt)

− 1

8
[(3 + e−4κt −

√
1− 2e−4κt + 17e−8κt) log2(3 + e−4κt −

√
1− 2e−4κt + 17e−8κt)

+ (3 + e−4κt +
√
1− 2e−4κt + 17e−8κt) log2(3 + e−4κt +

√
1− 2e−4κt + 17e−8κt)],(45)

and

S(Π(ρzW )) =
3

2
− 1

4
(1− e−4κt) log2(1− e−4κt)− 1

4
(1 + e−4κt) log2(1 + e−4κt). (46)

Now, the quantum correlation can be found analytically

M(ρzW ) = −1

4
(5 + e−4κt)− 1

4
(1 + e−4κt) log2(1 + e−4κt)

+
1

8
[(3 + e−4κt −

√
1− 2e−4κt + 17e−8κt) log2(3 + e−4κt −

√
1− 2e−4κt + 17e−8κt)

+ (3 + e−4κt +
√
1− 2e−4κt + 17e−8κt) log2(3 + e−4κt +

√
1− 2e−4κt + 17e−8κt)].(47)

Performing the optimization procedure of AMID gives us the same result, namely,

A(θ1, φ1, 0, θ2, φ2, 0, θ3, φ3, 0) = M(ρzW ). In other words, the infimum value of A happens

for ψi = 0 (i = 1, 2, 3) and arbitrary values of φi and θi.
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For the last case, consider the isotropic noise. The corresponding density matrix reads

[29]

ρdW (t) =
1

8







































α̃2 0 0 0 0 0 0 0

0 α̃1

√
2γ̃+ 0

√
2γ̃+ 0 0 0

0
√
2γ̃+ β̃+ 0 γ̃+ 0 0 0

0 0 0 β̃− 0 γ̃−
√
2γ̃− 0

0
√
2γ̃+ γ̃+ 0 β̃+ 0 0 0

0 0 0 γ̃− 0 β̃−
√
2γ̃− 0

0 0 0
√
2γ̃− 0

√
2γ̃− α̃4 0

0 0 0 0 0 0 0 α̃3







































, (48)

where






































α̃1 = 1 + e−4κt + e−8κt + e−12κt,

α̃2 = 1 + e−4κt − e−8κt − e−12κt,

α̃3 = 1− e−4κt − e−8κt + e−12κt,

α̃4 = 1− e−4κt + e−8κt − e−12κt,

γ̃± = 1± e−6κt.

(49)

The reduced density matrices are given by

(ρdW )a =
1

8















α̃1 + α̃2 0 0 0

0 β̃− + β̃+ γ̃− + γ̃+ 0

0 γ̃− + γ̃+ β̃− + β̃+ 0

0 0 0 α̃3 + α̃4















, (ρdW )b =
1

8





β̃+ + α̃2 + α̃4 0

0 β̃− + α̃1 + α̃3



 , (50)

and

Π(ρdW ) =
1

8







































α̃2 0 0 0 0 0 0 0

0 α̃1 0 0 0 0 0 0

0 0 β̃+ 0 γ̃+ 0 0 0

0 0 0 β̃− 0 γ̃− 0 0

0 0 γ̃+ 0 β̃+ 0 0 0

0 0 0 γ̃− 0 β̃− 0 0

0 0 0 0 0 0 α̃4 0

0 0 0 0 0 0 0 α̃3







































. (51)
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Tracing out the first two qubits and the third qubit leads to
[

Π(ρdW )
]a

= (ρdW )a and
[

Π(ρdW )
]b

= (ρdW )b which results in S((ρdW )a) = S(Π(ρdW )a) and S((ρdW )b) = S(Π(ρdW )b).

Thus, using the von-Neumann entropies

S(ρdW ) =
1

2
(7 + e−8κt)− 1

8
[α̃2 log2 α̃2 + α̃3 log2 α̃3

+ (β̃+ − γ̃+) log2(β̃+ − γ̃+) + (β̃− − γ̃−) log2(β̃− − γ̃−)]

− 1

16
[(β̃+ + γ̃+ + α̃1 +

√

β̃2
+ + 2β̃+γ̃+ + 17γ̃2+ − 2β̃+α̃1 − 2γ̃+α̃1 + α̃2

1)

log2(β̃+ + γ̃+ + α̃1 +

√

β̃2
+ + 2β̃+γ̃+ + 17γ̃2+ − 2β̃+α̃1 − 2γ̃+α̃1 + α̃2

1)

+ (β̃+ + γ̃+ + α̃1 −
√

β̃2
+ + 2β̃+γ̃+ + 17γ̃2+ − 2β̃+α̃1 − 2γ̃+α̃1 + α̃2

1)

log2(β̃+ + γ̃+ + α̃1 −
√

β̃2
+ + 2β̃+γ̃+ + 17γ̃2+ − 2β̃+α̃1 − 2γ̃+α̃1 + α̃2

1) (52)

+ (β̃− + γ̃− + α̃4 +

√

β̃2
− + 2β̃−γ̃− + 17γ̃2− − 2β̃−α̃4 − 2γ̃−α̃4 + α̃2

4)

log2(β̃− + γ̃− + α̃4 +

√

β̃2
− + 2β̃−γ̃− + 17γ̃2− − 2β̃−α̃4 − 2γ̃−α̃4 + α̃2

4)

+ (β̃− + γ̃− + α̃4 −
√

β̃2
− + 2β̃−γ̃− + 17γ̃2− − 2β̃−α̃4 − 2γ̃−α̃4 + α̃2

4)

log2(β̃− + γ̃− + α̃4 −
√

β̃2
− + 2β̃−γ̃− + 17γ̃2− − 2β̃−α̃4 − 2γ̃−α̃4 + α̃2

4)], (53)

and

S(Π(ρdW )) = 3− 1

8
[α̃1 log2 α̃1 + α̃2 log2 α̃2 + α̃3 log2 α̃3 + α̃4 log2 α̃4

+ (β̃+ + γ̃+) log2(β̃+ + γ̃+) + (β̃+ − γ̃+) log2(β̃+ − γ̃+)

+ (β̃− + γ̃−) log2(β̃− + γ̃−) + (β̃− − γ̃−) log2(β̃− − γ̃−)], (54)
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the quantum correlation reads

M(ρdW ) = −(1 + e−8κt)

2
− 1

8
[α̃1 log2 α̃1 + α̃4 log2 α̃4

+ (β̃+ + γ̃+) log2(β̃+ + γ̃+) + (β̃− + γ̃−) log2(β̃− + γ̃−)]

+
1

16
[(β̃+ + γ̃+ + α̃1 +

√

β̃2
+ + 2β̃+γ̃+ + 17γ̃2+ − 2β̃+α̃1 − 2γ̃+α̃1 + α̃2

1)

log2(β̃+ + γ̃+ + α̃1 +

√

β̃2
+ + 2β̃+γ̃+ + 17γ̃2+ − 2β̃+α̃1 − 2γ̃+α̃1 + α̃2

1)

+ (β̃+ + γ̃+ + α̃1 −
√

β̃2
+ + 2β̃+γ̃+ + 17γ̃2+ − 2β̃+α̃1 − 2γ̃+α̃1 + α̃2

1)

log2(β̃+ + γ̃+ + α̃1 −
√

β̃2
+ + 2β̃+γ̃+ + 17γ̃2+ − 2β̃+α̃1 − 2γ̃+α̃1 + α̃2

1) (55)

+ (β̃− + γ̃− + α̃4 +

√

β̃2
− + 2β̃−γ̃− + 17γ̃2− − 2β̃−α̃4 − 2γ̃−α̃4 + α̃2

4)

log2(β̃− + γ̃− + α̃4 +

√

β̃2
− + 2β̃−γ̃− + 17γ̃2− − 2β̃−α̃4 − 2γ̃−α̃4 + α̃2

4)

+ (β̃− + γ̃− + α̃4 −
√

β̃2
− + 2β̃−γ̃− + 17γ̃2− − 2β̃−α̃4 − 2γ̃−α̃4 + α̃2

4)

log2(β̃− + γ̃− + α̃4 −
√

β̃2
− + 2β̃−γ̃− + 17γ̃2− − 2β̃−α̃4 − 2γ̃−α̃4 + α̃2

4)]. (56)

Quantum correlation obtained by AMID for this case is A(θ1, φ1, 0, θ2, φ2, 0, θ3, φ3, 0) co-

incides with the one obtained by MID (black line in Fig. 2). The MID and AMID for the

three-qubit initial W state under various noisy channels are depicted in Fig. 2. As it can

be seen from the figure, the quantum correlations obtained by MID for two cases of Pauli-X

and -Y channels are overestimated with respect to ones obtained by AMID. Notice that, for

the initial W state our results do not agree with the results obtained by quantum discord

which is due to the different choices of the projective measurements [31].

V. CONCLUSIONS

In this paper, we have studied quantum correlations for the initial GHZ and W states in

the presence of various noisy channels using the measurement-induced disturbance and its

ameliorated version. We considered the solutions of the Lindblad equation where the noises

are represented by the Pauli-X, Pauli-Y, Pauli-Z and isotropic operators. This idea is based

on the fact that the classical measurements can be performed without disturbance. However,

measurements usually disturb the system in the quantum description and this disturbance

can be used to determine the quantumness of correlations. In the absence of noise, quantum

correlations of GHZ and W states are equal to unity, namely the half of the total correlation
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FIG. 2: Quantum correlation evaluated by MID and AMID for the three-qubit system with the

initial W state as a function of κt transmitted through various noisy channels: Pauli-X and Pauli-Y

by MID (brown line), Pauli-X by AMID (green line), Pauli-Y by AMID (blue line), Pauli-Z by

MID and AMID (red line), and isotropic by MID and AMID (black line).

which is expected for a pure state. After turning on noises, quantum correlation decreases

for all noises. For the case of the initial W state under Pauli-Y noisy channel (unlike GHZ

state that its corresponding quantum correlation vanishes for large κt), A(ρyW ) tends to

0.58 as κt goes to infinity. In comparison, our results showed that in the MID approach

the W state is more robust than GHZ state under noisy channels except Pauli-X channel.

This result is also valid for the AMID scenario except Pauli-Y channel for 0 < κt < 0.4.

Moreover, the obtained results for M(ρ) coincided with those of quantum discord just for

the initial GHZ state. Indeed, both the quantum discord and MID overestimate quantum

correlations of states with respect to AMID in agreement with Ref. [24].
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