Skip to main content
Log in

Protecting entanglement from amplitude damping in non-inertial frames by weak measurement and reversal

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Suppression of quantum decoherence is a critical issue in quantum information processing. Weak measurement can protect entanglement under decoherence in inertial frames. Here, we study how to protect entanglement in non-inertial frames, because there is no strict inertial frames, decoherence and loss of the entanglement generated by the Unruh effect will influence each other remarkably, so it is important to discover some methods to protect entanglement in non-inertial frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

  3. Bouwmeester, D., Ekert, A., Zeilinger, A.: The Physics of Quantum Information. Springer, Berlin (2000)

  4. Bombelli, L., Koul, R.K., Lee, J., Sorkin, R.D.: Quantum source of entropy for black holes. Phys. Rev. D 34, 373 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  6. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  7. Terashima, H.: Entanglement entropy of the black hole horizon. ibid 61, 104016 (2000).

  8. Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)

    Article  ADS  Google Scholar 

  9. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. Alsing, M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  11. Ralph, T.C., Milburn, G.J., Downes, T.: Quantum connectivity of space-time and gravitationally induced decorrelation of entanglement. Phys. Rev. A 79, 022121 (2009)

    Article  ADS  Google Scholar 

  12. Doukas, J., Hollenberg, L.C.L.: Loss of spin entanglement for accelerated electrons in electric and magnetic fields. Phys. Rev. A 79, 052109 (2009)

    Article  ADS  Google Scholar 

  13. Moradi, S.: Distillability of entanglement in accelerated frames. Phys. Rev. A 79, 064301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Martın-Martınez, E., Leon, J.: Fermionic entanglement that survives a black hole. Phys. Rev. A 80, 042318 (2009)

    Article  ADS  Google Scholar 

  15. Martın-Martınez, E., Leon, J.: Quantum correlations through event horizons: fermionic versus bosonic entanglement. Phys. Rev. A 81, 032320 (2010)

    Article  ADS  Google Scholar 

  16. Martın-Martınez, E., Leon, J.: Population bound effects on bosonic correlations in noninertial frames. Phys. Rev. A 81, 052305 (2010)

    Article  ADS  Google Scholar 

  17. Wang, J., Deng, J., Jing, J.: Classical correlation and quantum discord sharing of Dirac fields in noninertial frames. Phys. Rev. A 81, 052120 (2010)

    Article  ADS  Google Scholar 

  18. Wang, J., Jing, J.: Quantum decoherence in noninertial frames. ibid 82, 032324 (2010)

    MathSciNet  Google Scholar 

  19. Ostapchuk, D.C.M., Mann, R.B.: Generating entangled fermions by accelerated measurements on the vacuum. Phys. Rev. A 79, 042333 (2009)

    Article  ADS  Google Scholar 

  20. Landulfo, A.G.S., Matsas, G.E.A.: Sudden death of entanglement and teleportation fidelity loss via the Unruh effect. Phys. Rev. A 80, 032315 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Adesso, G., Fuentes-Schuller, I., Ericsson, M.: Continuous-variable entanglement sharing in noninertial frames. Phys. Rev. A 76, 062112 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Leon, J., Martin-Martınez, E.: Spin and occupation number entanglement of Dirac fields for noninertial observers. Phys. Rev. A 80, 012314 (2009)

    Article  ADS  Google Scholar 

  23. Mann, R.B., Villalba, V.M.: Speeding up entanglement degradation. Phys. Rev. A 80, 022305 (2009)

    Article  ADS  Google Scholar 

  24. Pan, Q., Jing, J.: Degradation of nonmaximal entanglement of scalar and Dirac fields in noninertial frames. Phys. Rev. A 77, 024302 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Pan, Q., Jing, J.: Hawking radiation, entanglement, and teleportation in the background of an asymptotically flat static black hole. Phys. Rev. D 78, 065015 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wang, J., Pan, Q., Jing, J.: Projective measurements and generation of entangled Dirac particles in Schwarzschild spacetime. Ann. Phys. 325, 1190 (2010).

  27. Wang, J., Pan, Q., Jing, J.: Entanglement redistribution in the Schwarzschild spacetime. Phys. Lett. B 692, 202 (2010)

    Article  ADS  Google Scholar 

  28. Wang, J., Pan, Q., Chen, S., Jing, J.: Entanglement of coupled massive scalar field in background of dilaton black hole. Phys. Lett. B 677, 186 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wang, J., Pan, Q., Chen, S., Jing, J.: Quantum entanglement of dirac field in background of an asymptotically flat static black hole. Quantum Inf. Comput. 10, 0947 (2010)

    MathSciNet  Google Scholar 

  30. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.O., Zeh, H.D.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  31. Schlosshauer, M.A.: Decoherence and the Quantum-to Classical Transition. Springer, Berlin (2007)

    Google Scholar 

  32. Brune, M., Hagley, E., Dreyer, J., Maitre, X., Maali, A., Wunderlich, C., Raimond, J.M., Haroche, S.: Observing the progressive decoherence of the “Meter” in a quantum measurement. Phys. Rev. Lett. 77, 4887 (1996)

    Article  ADS  Google Scholar 

  33. Myatt, C.J., King, B.E., Turchette, Q.A., Sackett, C.A., Kielpinski, D., Itano, W.M., Monroe, C., Wineland, D.J.: Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269 (2000).

  34. Rideout, D., et al.: Fundamental quantum optics experiments conceivable with satellites-reaching relativistic distances and velocities. Class. Quant. Gravit. 29, 224011 (2012)

    Article  ADS  Google Scholar 

  35. Friis, N., Lee, A.R., Truong, K., Sabin, C., Solano, E., Johansson, G., Fuentes, I.: Relativistic quantum teleportation with superconducting circuits. Phys. Rev. Lett. 110, 113602 (2013)

    Article  ADS  Google Scholar 

  36. Ahmadzadegan, A., Martín-Martínez, E., Mann, R.B.: Cavities in curved spacetimes: the response of particle detectors. Phys. Rev. D 89, 024013 (2014)

  37. Weisskopf, V., Wigner, E.: Berechnung der natülichen Linienbreite auf Grund der Diracschen Lichttheorie. Z. Phys. 63, 54 (1930)

  38. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  39. Kim, Y.S., Cho, Y.S., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978 (2009)

    Article  ADS  Google Scholar 

  40. Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  41. Al-Amri, M., Scully, M.O., Zubairy, M.S.: Reversing the weak measurement on a qubit. J. Phys. B: At. Mol. Opt. Phys. 44, 165509 (2011).

  42. Salles, A., de Melo, F., Almeida, M.P., Hor-Meyll, M., Walborn, S.P., SoutoRibeiro, P.H., Davidovich, L.: Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)

  43. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  45. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)

    Article  ADS  Google Scholar 

  46. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  47. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Ye, L. Protecting entanglement from amplitude damping in non-inertial frames by weak measurement and reversal. Quantum Inf Process 14, 321–335 (2015). https://doi.org/10.1007/s11128-014-0847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0847-2

Keywords

Navigation