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Abstract

Implementing the group arithmetic is a cost-critical task when designing quantum circuits for Shor’s
algorithm to solve the discrete logarithm problem. We introduce a tool for the automatic generation of
addition circuits for ordinary binary elliptic curves, a prominent platform group for digital signatures.
Our Python software generates circuit descriptions that, without increasing the number of qubits or
T -depth, involve less than 39% of the number of T -gates in the best previous construction. The software
also optimizes the (CNOT) depth for F2-linear operations by means of suitable graph colorings.

1 Introduction

Ordinary binary elliptic curves are an algebraic structure of great cryptographic significance. All binary
curves suggested in the Digital Signature Standard [19] fall in this class, and the cost of implementing
Shor’s quantum algorithm [24] in such groups has been explored by various authors. While optimizing
the implementation of the Quantum Fourier Transform is a quite well understood task, minimizing the
implementation cost of the scalar multiplication in Shor’s algorithm remains a design challenge.

Approaches by Kaye and Zalka [14] and by Maslov et al. [16] rely on the use of projective coordinates
and efficient circuits for adding fixed (classically precomputed) points in a right-to-left variant of the double-
and-add algorithm. In fact, only a “generic” addition of a fixed point is implemented, avoiding a handling
of special cases of the addition law (doubling a point, adding a point with its inverse, or with the identity
element). As observed in [16], it is sufficient to represent the input and output points of such a point addition
circuit with projective coordinates. Amento et al. [3] suggest to replace ordinary projective coordinates with
a representation used by Higuchi and Takagi [13], therewith reducing the number of T -gates1 needed. Taking
the number of T -gates as cost measure, this is so far the most efficient implementation proposed, but as
noted in [23], alternative constructions can reduce the design complexity: If dedicated circuitry for doubling
a point is available, scalar multiplication can be realized by invoking only two types of addition circuits—
rather than several hundred different ones when dealing with cryptographically significant parameters. These
doubling circuits do impact the gate count, however. Happily, with the software tool presented below,
designing addition circuits can be automated, making the derivation of a few hundred addition circuits for
different points a realistic option.

1As is common, we do not distinguish between T - and T †-gates in statements on the number of T -gates or the T -depth.
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To optimize circuit depth, [23] suggest a tree-style organization of the scalar multiplication in Shor’s
algorithm. However, this method builds on general addition circuits for the elliptic curve, i. e., addition
circuits which have two variable input points and handle all cases of the addition law. In [23] complete
binary Edwards curves [8] are used for this purpose. While the resulting circuit depth is compelling, the
number of T -gates and number of qubits is much worse than with a right-to-left double and add procedure.
When aiming at a small T -gate count, optimizing quantum circuits for the “generic” addition of a fixed point
appears to be the more preferrable research direction. In this paper, the central optimization criteria is the
number of T -gates, and as secondary criteria we take the T -depth and the number of qubits into account.

Contribution. Building on an addition formula by Al-Daoud et al. [1] we show that the number of T -
gates in the best available circuit to add a fixed point [2] can be reduced by more than 60% without affecting
the T -depth negatively. At the same time the number of qubits can be reduced at the cost of a depth increase
of about 4n when working with curves over F2n . The circuit descriptions are derived automatically, and by
means of edge colorings of certain bipartite graphs it is ensured that the involved subcircuits for F2-linear
operations—such as multiplication by a constant, squaring and computing a square root—are optimized.
For parameters of interest the latter allow substantial savings in the number of CNOT gates compared to the
bounds used in [2]. Building on an available polynomial-basis arithmetic for the underlying binary field, the
Python [12] software we introduce synthesizes for a given curve and curve point an optimized addition
circuit and outputs this circuit as a .qc file. This file can then be processed with QCViewer [11], for
instance, or more generally serve as input for automated or manual post-processing.

Structure of this paper. In the next section we look at the choice of a suitable (polynomial-basis) rep-
resentation of the underlying finite field and show how edge colorings can be used to find efficient circuits
for squaring, constant multiplication, and square root computation. In Section 3 we combine such circuits
with Al-Daoud et al.’s addition formula for ordinary binary elliptic curves to derive a new quantum circuit
for point addition with improved T -gate complexity. Complementing the theoretical discussion, we discuss
concrete examples of circuits that have been synthesized with our software.

2 Quantum circuits for F2n-arithmetic

A binary field F2n can be represented in various different ways, resulting in potentially very different quan-
tum circuits to realize the arithmetic. The use of a normal basis has been considered [3], but for elliptic curve
addition with a small T -gate complexity, a polynomial basis representation seems the preferrable choice (see
the discussion in [2, Section 2]). In a polynomial basis representation, F2n is expressed as a quotient

F2n = F2[x]/(p)

of the univariate polynomial ring F2[x] with binary coefficients, where p ∈ F2n [x] is an irreducible poly-
nomial of degree n. Having fixed p, each element a ∈ F2n is uniquely represented by a bit vector
(a0, a1, . . . , an−1) ∈ Fn2 such that a = a0 + a1x + · · · + an−1x

n−1 (mod p). This bit vector is natu-
rally represented with n qubits |a0〉 . . . |an−1〉. To implement point addition with a projective representation
on a binary elliptic curve, we rely on addition, multiplication, multiplication with a non-zero constant and
squaring in the underlying finite field. Quantum circuits for these tasks are available (cf. [6, 14, 16, 2]):

Addition: To add two field elements a, b ∈ F2n , we can simply use n CNOT gates that operate in parallel:

|a, b〉 7−→|a, a⊕ b〉.
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Alternatively, if the operands are to remain unchanged, we can implement

|a, b〉 |0n〉 7−→|a, b〉 |a⊕ b〉

in the obvious way with 2n CNOT gates in depth 2.

Multiplication: Optimizing the field multiplier is outside the scope of this paper, and subsequently we
will use a linear-depth construction by Maslov et al. [16]. With this method one can multiply two
elements a, b ∈ F2n with no more than n2 Toffoli gates and n2 − 1 CNOT gates. For certain choices
of p, including trinomials, this bound can be improved further. We note that the point addition circuit
developed in Section 3 treats the underlying F2n-multiplier as a black box. If more efficient field
multipliers become available, integrating these into our synthesis tool should be straightforward.

Multiplication with a non-zero constant and squaring: Both of these operations are linear, and [2] argue
that an LUP decompositon yields a circuit of depth≤ 2n that can be realized with n2+n CNOT gates.
Although no T -gates are needed for these operations, optimizing this step further is worthwhile: for
the binary elliptic curves in the Digital Signature Standard [19], we have n ≥ 163 and accordingly
the complete scalar multiplicaton in Shor’s algorithm involves several hundred addition circuits.

2.1 Optimizing F2-linear operations and minimal edge colorings

Multplication by a constant and squaring are special cases of finding a quantum circuit implementing a map

|a〉 |0n〉 7−→|a〉 |b0 . . . bn−1〉

where a =
∑n−1

i=0 aix
i + (p) is an arbitrary input from F2n and (b0, . . . , bn−1) = (a0, . . . , an−1) · M

for some non-singular matrix M ∈ GLn(F2). Obviously such a vector-by-matrix multiplication can be
implemented with one CNOT gate for each non-zero entry of M . This can be done without ancillae qubits
using a total of weight(M) CNOT gates. To minimize the circuit depth we interpret M = (mi,j)0≤i<n
as biadjacency matrix of a bipartite graph. Namely, the graph associated with M has 2n vertices with the
vertex set splitting into the “control part” {a0, . . . , an−1} and the “target part” {b0, . . . , bn−1}. Each CNOT
corresponds to exactly one edge: there is an edge between ai and bj if and only if mi,j = 1. An edge
coloring of this graph with d colors immediately yields a quantum circuit to multiply by M in depth d—all
CNOT gates corresponding to an edge of the same color operate on disjoint qubits and therewith can be
executed in parallel.

The minimal possible value of d is known as chromatic index of the graph. For a bipartite graph the
chromatic index is equal to the maximum degree of a vertex, i. e., equal to the maximal Hamming weight
of the rows and columns of M . Efficient classical algorithms for finding such a minimal edge coloring are
known (see, e. g., [10]). For our software implementation we use a solution by Pointdexter [20] to find the
required edge colorings.

Proposition 2.1. Multiplication by a matrix M ∈ GLn(F2), i. e., the map |u〉 |v〉 −→|u〉 |v +M · u〉 with
arbitrary input vectors u, v ∈ Fn2 , can be implemented with weight(M) CNOT gates. For this, an ancillae-
free circuit of depth equal to the maximal Hamming weight of the rows and colums of M is sufficient.

As worst-case bounds this implies the following.

Corollary 2.1. Multiplication by an arbitrary matrix M ∈ GLn(F2) can be implemented with at most
n2 − n+ 1 CNOT gates, using an ancillae-free circuit of depth at most n.

3



Proof. Because of Proposition 2.1 it suffices to show that weight(M) ≤ n2−n+1. Suppose this is not true,
i. e., weight(M) ≥ n2 − n+ 2. Then M must contain at least two rows with all entries being equal to 1, as
having n−1 rows each of weight≤ n−1 results in a matrix of weight≤ n+(n−1) · (n−1) = n2−n+1.
To bring the weight to n2 − n+ 2 at least one more row must be completed to an all-one row. Thus M has
two identical rows, which contradicts M ∈ GLn(F2).

Example 2.1 (Constant multiplication in F8). Consider n = 3 and p = 1+ x+ x3, i. e., F23 = F2[x]/(1 +
x+ x3). Then multiplying an arbitrary polynomial a = a0 + a1x+ a2x

2 + (p) with 1 + x+ x2 + (p) can
be interpreted as multiplying the coefficient vector (a0, a1, a2) with the following matrix of weight 6: 1 1 1

1 0 1
1 0 0


From this matrix we obtain the subsequent graph with six vertices and six edges.

a2

a1

a0

b2

b1

b0

Consequently, we need a total of six CNOT gates, and in accordance with the matrix containing a row
(and a column) of weight three, the graph has chromatic index 3, yielding the quantum circuit shown in
Figure 1. The first three CNOT gates can be executed simultaneously (solid edges), similarly the next two
CNOT gates can be applied at the same time (dashed edges), and finally the last CNOT gate can be applied
(dotted edge).

a0

a1

a2

b0

b1

b2

a0

a1

a2

b0

b1

b2

Figure 1: A circuit for ancillae-free multiplication of a ∈ F2[x]/(1+x+x
3) with 1+x+x2+(1+x+x3).

Example 2.2 (Squaring in F128). Now let n = 7 and choose p = 1 + x + x7. Squaring a0 + a1x + · · · +
a6x

6 + (p) ∈ F2[x]/(p) can be expressed as multiplying the coefficient vector (a0, . . . , a6) ∈ F7
2 by the

matrix 

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1


.
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a0

a1

a2

a3

a4

a5

a6

b0

b1

b2

b3

b4

b5

b6

a0

a1

a2

a3

a4

a5

a6

b0

b1

b2

b3

b4

b5

b6

Figure 2: Ancillae-free squaring of a ∈ F2[x]/(1 + x+ x7) in depth 2.

This matrix has 10 non-zero entries, and a maximal row or column weight of 2. We obtain the depth 2
circuit shown in Figure 2 which corresponds to the following bipartite graph with chromatic index 2:

a6 b6

a5 b5

a4 b4

a3 b3

a2 b2

a1 b1

a0 b0

Example 2.3 (ECDSA: squaring). The Digital Signature Standard [19] specifies five different fields for use
in connection with binary elliptic curves along with a polynomial-basis representation for each of these
fields. We used our software to find the depth and number of CNOT gates needed for an ancillae-free
squaring operation with each of these representations. The corresponding values are listed in Table 1.

The last two examples suggest that trinomials are an attractive choice for deriving compact ancillae-free
squaring circuits, and this is indeed the case. The same holds true for computing the unique square root of
an element in F2n ; the latter will be helpful for us, as the circuit used to establish Theorem 2.2 involves
squarings as well as a square root computation for “uncomputing”. To quantify the benefit of a “trinomial
basis representation”, first we can exploit that the irreducibility of 1 + xm + xn ∈ F2[x] (with m < n)
implies the irreducibility of 1 + xn−m + xn ∈ F2[x] [18, Fact 4.75]. So we may choose the middle-term to
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irreducible polynomial depth CNOT gates
1 + x3 + x6 + x7 + x163 8 415

1 + x74 + x233 3 386
1 + x5 + x7 + x12 + x283 7 722

1 + x87 + x409 3 656
1 + x2 + x5 + x10 + x571 7 1438

Table 1: Resource count of an ancillae-free squaring operation for binary fields in [19].

be of degree ≤ bn/2c. From the explicit formulae for a classical implementation by Rodrı́guez-Henrı́quez
et al. [21] we obtain the following.

Proposition 2.2. Let F2n = F2[x]/(1 + xm + xn) with m ≤ bn/2c. Then the map |a〉 |c〉 7−→|a〉 |c+ a2〉
(with variable input c ∈ F2n) can be implemented with an ancillae-free quantum circuit of depth ≤ m + 1
using no more than 3n CNOT gates.

Moreover, the map |a〉 |c〉 7−→|a〉 |c+
√
a〉 can be implemented with an ancillae-free quantum circuit

using no more than 5n CNOT gates.

Proof. Let A := a0 + a1x + · · · + an−1x
n−1 be a representative of an F2n-element a. In [21] explicit

expressions for computing the representations of a2 and
√
a from a0, . . . , an−1 are given. Each coefficient

of a2 can be obtained as a sum of at most three ais. Similarly, each coefficient of
√
a can be obtained as a

sum of no more than five ais.
To justify the depth bound m for a squaring operation, let B := a0 + a1x

2 + a2x
4 + · · ·+ an−1x

2n−2.
Then B is a representative of a2, and the degree of B is ≤ 2n− 2. To find the coefficients of a2, we have to
find B mod xn + xm + 1, i. e., a representative of degree less than n. With η := n+ (n mod 2) being the
smallest even number greater or equal to n, we can write

B = a0 + a1x
2 + · · ·+ a(η/2)−1x

η−2︸ ︷︷ ︸
=:B0

+ aη/2x
η + · · ·+ an−1x

2n−2︸ ︷︷ ︸
=:B1

.

No reduction is needed for B0, and we have

B1 = xn ·
(
aη/2x

η−n + · · ·+ an−1x
n−2)

= (1 + xm) ·
(
aη/2x

η−n + · · ·+ an−1x
n−2)

= aη/2x
η−n + · · ·+ an−1x

n−2︸ ︷︷ ︸
=:B10

+ aη/2x
η+m−n + · · ·+ an−1x

m+n−2︸ ︷︷ ︸
=:B11

.

No reduction is needed for B10, and we can compute B0+B10 in depth 2− (n mod 2).We can reduce B11,
a polynomial of degree ≤ m + n − 2, in the same way as we just did with B1, and after at most m − 1
reduction steps we obtain a representative of degree less than n. This increases the circuit depth at most by
m− 1, resulting in a total depth of at most (m− 1) + 2− (n mod 2) ≤ m+ 1.

3 Adding a fixed point with reduced T -gate complexity

All of the binary elliptic curves proposed in the Digital Signature Standard [19] fall in the class of so-called
ordinary binary elliptic curves. In general, such curves can be expressed by means of a short Weierstraß
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equation
y2 + xy = x3 + a2x

2 + a6 (1)

where a2, a6 ∈ F2n with a6 6= 0. We write

Ea2,a6(F2n) := {(x, y) ∈ F2n : y2 + xy = x3 + a2x
2 + a6} ∪ {O}

for the set of (F2n-rational) points on such a curve. The (projective) point O is often referred to as point at
infinity and serves as neutral element in the groupEa2,a6(F2n). With this affine representation of an ordinary
binary elliptic curve, the group law is summarized in the following Algorithm 1, taken from [25]. At this
P1 = (x1, y1) ∈ Ea2,a6(F2n) and P2 = (x2, y2) ∈ Ea2,a6(F2n).2

Data: Points P1 = (x1, y1) and P2 = (x2, y2) on Ea2,a6(F2n).
Result: Point P3 = (x3, y3) with P3 = P1 + P2.
if P1 = O then

return P2

if P2 = O then
return P1

if x1 = x2 then
if y1 + y2 = x2 then /* P1 = −P2 */

return O
else /* P1 = P2 */

m = x2 + y2/x2;
x3 = m2 +m+ a2;
y3 = x22 + (m+ 1) · x3

else /* P1 6= ±P2 */
m = (y1 + y2)/(x1 + x2);
x3 = m2 +m+ x1 + x2 + a2;
y3 = (x2 + x3) ·m+ x3 + y2

return (x3, y3)

Algorithm 1: Adding two points on an ordinary binary elliptic curve using affine coordinates.

Kaye and Zalka [14] argue that to implement Shor’s algorithm it it sufficient to provide a quantum
circuit that implements the “generic branch” P1 6= ±P2 of Algorithm 1 for a fixed point P2, and we restrict
to this situation. To avoid the (costly) inversion operation, one usually implements this point addition in a
projective representation. The standard projective representation (X,Y, Z) ∈ F2n \ {(0, 0, 0)} of an affine
point (x, y) satisfies x = X/Z and y = Y/Z. Here we follow a different convention, introduced by López
and Dahab [15], that has also been used for the addition circuit in [2]: the affine point (x, y) is represented
projectively by (X,Y, Z) with x = X/Z and y = Y/Z2. Accordingly, the curve given by Equation (1)
would be expressed as

Y 2 +XY Z = X3Z + a2X
2Z2 + a6Z

4, (2)

the identity element O being represented by (X, 0, 0) ∈ F3
2n \ {(0, 0, 0)}. Based on an addition formula by

Higuchi and Takagi [13] for this type of projective representation, in [2] the following result is given, where

• GM (n) and DM (n) denote the number of gates and depth needed to implement an F2n-multiplier,
respectively;

2As (0, 0) 6∈ Ea2,a6(F2n), the neutral element O can be represented as (0, 0).
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• GTM (n) andDT
M (n) denote the number of T -gates and T -depth needed to implement an F2n-multiplier,

respectively.

Proposition 3.1 ([2, Proposition 3.2]). Let P2 be a fixed point on Ea2,a6(F2n). With the above-mentioned
variant of projective coordinates, the addition |X1〉 |Y1〉 |Z1〉 |0〉 |0〉 |0〉 7−→|X1〉 |Y1〉 |Z1〉 |X3〉 |Y3〉 |Z3〉
can be carried out with a quantum circuit C satisfying all of the following:

• The total number of T -gates in C is 13 ·GTM (n).

• The total number of gates in C is at most 13 ·GM (n) plus 12n2+O(n) (the latter being CNOT gates).

• The T -depth of C is 4 ·DT
M (n).

• The overall depth of C is 4 ·DM (n) plus 4n+O(1) (the latter being CNOT gates).

This includes the cost of cleaning up ancillae. If (X1, Y1, Z1) is not the identity or equal to ±P2, then
(X3, Y3, Z3) is a representation of the sum of (X1, Y1, Z1) and the fixed point P2 in the above-mentioned
variant of projective coordinates.

To the best of our knowledge, in terms of T -gate complexity this is currently the most efficient quantum
circuit that has been published for the “generic addition” of a fixed point on an ordinary binary elliptic curve.

3.1 An addition circuit based on a formula by Al-Daoud et al.

Invoking López-Dahab coordinates as described above, in [1] Al-Daoud et al. present a point addition for-
mula which seems well suited for a quantum circuit that aims at adding a fixed point. Besides requiring only
four general multiplications, in two cases a constant multiplication and a squaring operation can naturally be
combined into a single matrix-vector multiplication. More specifically, let P2 = (x2, y2, 1) be a fixed point
on the curve given by Equation (2), and let P1 = (X1, Y1, Z1) be an arbitrary point on this curve (which
will be given as input to our quantum circuit). We assume that O 6= P1 6= ±P2. Then a representation
(X3, Y3, Z3) of the sum P1 + P2 can be computed as follows.

A = Y1 + y2Z
2
1 , B = X1 + x2Z1, C = B · Z1,

Z3 = C2, D = x2Z3,
X3 = A2 + C · (A+B2 + a2C),
Y3 = (D +X3) · (A · C + Z3) + (y2 + x2)Z

2
3

The above formulation is taken from the explicit-formulas database [7, madd-2005-dl] (see also [9, Chap-
ter 13.3.1.d]). To characterize the complexity of our addition circuit, it is appropriate to distinguish between
the resources for general multiplication, squaring, and other matrix-vector multiplications. As manifested
in Proposition 2.2 and Table 1, for certain field representations the resource count of a squaring opera-
tion is remarkably modest, even for cryptographically significant field sizes. So in the sequel we write
GS(n) ≤ n2 − n + 1 for the number of (CNOT) gates needed to implement a squaring operation with the
underlying representation of F2n and analogously DS(n) ≤ n for the depth of such a circuit. The num-
ber of qubits needed in our construction will depend on the details of the underlying F2n-multiplier. So
to quantify the number of qubits, we assume that the multiplication of any a, b ∈ F2n—i. e., the function
|a〉 |b〉 |c〉 7→|a〉 |b〉 |c+ a · b〉 with c ∈ F2n arbitrary—is realized with

n+ n︸ ︷︷ ︸
input

+ n︸︷︷︸
output

+AM (n)︸ ︷︷ ︸
ancillae

qubits. With this notation we obtain the following.
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X1

Y1

Z1

0

0

0

0

0

0

0

0

SM

X M

S

S

S

a2

X

M

M

xyZ
M

IM

IX

Ia2

IS

IS

SR

IX

ISM X1

Y1

Z1

0

Z3

0

X3

0

0

0

Y3

Figure 3: A complete circuit adding a point in López-Dahab coordinates on E1,1(F2) with the fixed affine
point (1, 1). Parsing the circuit from left to right, the initial gates labeled SM, X, and M correspond to the
operations in Steps 1–3 of the proof of Theorem 3.1. The subsequent three gates (labeled S) implement the
parallel squarings in Step 4. This is followed by the parallel scalar multiplications with a2 (a2) and x2 (X)
from Step 5 and three CNOT gates operating on disjoint wires to implement Step 6. The two multipliers
in Step 7 are realized by two Toffoli gates (marked M), and for the sake of completeness we include a
box labelled xyZ which is actually the identity as for our specific example the value of x2 + y2 in Step 7
is 0. Step 8 corresponds to a single CNOT gate, and the subsequent Toffoli gate labelled M implements
Step 9. Starting the clean-up part of the circuit, the CNOT from Step 10 is used, followed by the reversal
of a multiplier in Step 11 (IM). Step 12 results in three CNOT gates. This is followed by the reversal
of the scalar multiplications in Step 13 (IX and Ia2). Reversing of the squaring operations from Step 14
is implemented by the two gates marked IS. They can be executed in parallel with the gate marked SR,
realizing the square root computation in Step 14. Eventually, Step 15 corresponds to the gate labelled IX,
and Step 16 is realized by a singe CNOT gate (ISM).

Theorem 3.1. Let P2 be a fixed point on the curve Ea2,a6(F2n). Using López-Dahab coordinates, the
addition |X1〉 |Y1〉 |Z1〉 |0〉 |0〉 |0〉 7−→|X1〉 |Y1〉 |Z1〉 |X3〉 |Y3〉 |Z3〉 of this point can be carried out with a
quantum circuit C satisfying all of the following:

• The total number of T -gates in C is 5GTM (n).

• The total number of gates in C is at most 5GM (n) plus 5GS(n) + 10n2 − 2n + 10 (the latter being
CNOT gates).

• The T -depth of C is 4DT
M (n).

• The overall depth of C is 3DM (n) + max(DM (n), n) plus DS(n) + 7n + 4 (the latter being CNOT
gates).

• The total number of qubits, including the 3n qubits for storing the input, is 11n+ 4AM (n).

This includes the cost to clean up ancillae. If (X1, Y1, Z1) is not the identity or equal to ±P2, then
(X3, Y3, Z3) is a representation in López-Dahab coordinates of the sum of (X1, Y1, Z1) with P2.

Proof. To find X3, Y3 and Z3 we proceed as follows.

1. Using ≤ (n2− n+1)-CNOT gates and depth ≤ n, we can compute A = Y1 + y2 ·Z2
1 , i. e., the wires

originally storing Y1 now store A.

9



2. Similarly, we now compute B = X1 + x2 ·Z1 using ≤ n2−n+1 CNOT gates in depth ≤ n, storing
B in the wires originally holding X1.

3. Multiplying B and Z1 we store C = B · Z1 into a new set of n wires (initialized to |0〉). This
increases the depth by DM (n) and uses GM (n) gates. Similarly the T -depth and number of T -gates
are increased by DT

M (n) and GTM (n), respectively.

4. Square C, A and B to obtain Z3, A2 and B2 in parallel in depth DS(n) by using 3GS(n)-CNOT
gates. To store the results we add 3n additional (|0〉-initialized) qubits. The wires holding A2 will be
used to store X3.

5. Now compute a2 · C in depth ≤ n using ≤ n2 − n + 1-CNOT gates. The result of this operation is
added directly to B2. At the same time, compute D = x2 · Z3 using another ≤ n2 − n + 1 CNOT
gates. The latter result is stored in n new (|0〉-initialized) qubits.

6. Add A to the qubits holding B2+a2 ·C. For this, n CNOT gates and depth 1 suffice. Simultaneously
we can apply n+ n more CNOT gates to create a copy C ′ of C and a copy Z ′3 of Z3 in a set of n+ n
new (|0〉-initialized) qubits. Having C ′ available enables us to perform the next two multiplications in
parallel.

7. With ≤ 2GM (n) + n2 − n + 1 gates and increasing the depth by ≤ max(DM (n), n), we can now
compute in parallel

• C · (A+B2 + a2 · C) and add the result onto the wires for the value X3;

• A · C ′ and add the result onto the wires holding Z ′3;

• (x2 + y2) · Z2
3 and store the result in the (|0〉-initialized) wires for the value Y3.

This step increases the T -depth by DT
M (n) and the number of T -gates by 2GTM (n).

8. With n CNOT gates in depth 1 we can add X3 to the wires storing D.

9. Find (D +X3) · (A · C ′ + Z ′3) using GM (n) gates which increases the depth by DM (n) units. The
result is added to the wires which are to hold Y3. This step increases the number of T -gates byGM (n)
and the T -depth by DT

M .

At this point we have computed all of X3, Y3 and Z3, and we are left with cleaning up ancillae and
restoring the input values.

10. AddX3 to the wires holdingD+X3 for which we need n CNOT gates and which increases the circuit
depth by 1.

11. Reversing the multiplicationA ·C ′ takes depthDM (n) and requiresGM (n) gates. This also increases
the T -depth by DT

M (n) and the number of T -gates accordingly by GTM (n).

12. To reverse the CNOT operations from Step 6 we execute them again in depth 1, using 3n CNOT gates.

13. Next, the two linear operations from Step 5 can be run backwards simultaneously, increasing the depth
by ≤ n and adding ≤ 2 · (n2 − n+ 1) CNOT gates to the total gate count.
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14. The squarings of A and B can be run backwards simultaneously using 2GS(n) gates. Simultaneously
we can apply a square root computation to Z3 = C2 to cancel the output C of the multiplier in Step 3.
The square root computation can be done with ≤ n2 − n + 1 CNOT gates, and with DS(n) ≤ n we
see that the overall depth of this step is ≤ n.

15. Reversing the computation of B takes ≤ n2−n+1 CNOT gates and can be completed in depth ≤ n.

16. Finally, reversing the computation of A increases the gate count by ≤ n2 − n + 1 CNOT gates and
the depth by n.

Table 2 summarizes the resource count for each of these steps. In the column for the number of qubits we
count all qubits that are used on top of the 3n qubits necessary to represent the input (X1, Y1, Z1); this
includes the 3n bits needed to store the result (X3, Y3, Z3). Exploiting that the multipliers are the only parts
of the circuit involving T -gates, from this table we immediately obtain the bounds claimed.

step no. gates depth no. qubits
1 n2 − n+ 1 n 0

2 n2 − n+ 1 n 0

3 GM (n) DM (n) n+AM (n)

4 3GS(n) DS(n) 3n

5 2 · (n2 − n+ 1) n n

6 3n 1 2n

7 2GM (n) + n2 − n+ 1 max(DM (n), n) n+ 2AM (n)

8 n 1 0

9 GM (n) DM (n) AM (n)

10 n 1 0

11 GM (n) DM (n) 0

12 3n 1 0

13 2 · (n2 − n+ 1) n 0

14 2 ·GS(n) + n2 − n+ 1 n 0

15 n2 − n+ 1 n 0

16 n2 − n+ 1 n 0

Table 2: Resource bounds for each step of the circuit in the proof of Theorem 3.1.

Remark 3.1. Proposition 3.1 does not give an explicit count for the number of qubits, but the proof of [2,
Proposition 3.2] emphasizes parallelization. Step 1–3 of the latter already add 6n new wires to the 3n qubits
for the input. Step 4 then executes 4 field multiplications in parallel (invoking 4AM (n) ancillae), and Step 6
runs three more multipliers in parallel, storing the result in 3n new wires, so it is fair to conclude that the
total number of qubits is larger than the bound 11n+ 4AM (n) established in Theorem 3.1.

Also, it is worth noting that the resource bounds in Theorem 3.1 are indeed worst-case bounds. In
cryptographic applications it is common to choose a2 ∈ {0, 1}, thereby eliminating the need to implement
the (T -gate free) computation of a2 · C.
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The proof of Theorem 3.1 is constructive, and we implemented a software tool which for a given ir-
reducible polynomial p ∈ F2[x], a curve point Q ∈ Ea2,a6(F2[x]/(p)) and a2 ∈ F2[x]/(p) generates
the corresponding quantum circuit for the “generic addition” of Q. As programming language we chose
Python, and the resulting quantum circuits are stored in a text file using the .qc format. This format
supports the grouping of gates into subcircuits, allowing a user to hide the details of, e. g., a field multiplier,
when viewing the circuit in QCViewer. Figure 3 gives an example of a complete addition circuit using the
curve E1,1(F2) and P = (1, 1) as fixed point to be added. The F2-multiplier is realized as a Toffoli gate,
requiring AM (1) = 0 ancillae. As detailed by Amy et al. in [4], a Toffoli gate can be decomposed into a
circuit involving a total of GM (1) = 15 gates, GTM (1) = 7 of which are T -gates and the remaining ones
being CNOT and Hadamard gates. This can be done with a T -depth of DT

M (1) = 4 and an overall depth of
DM (1) = 8.

By means of our software, we also experimented with larger curves. For larger curves, the detailed T -
gate complexity of the circuit depends very much on the complexity of the underlying F2n-multiplier. For
our experiments we built on an existing Python code by Brittanney Amento to produce a .qc description
of an F2n-multiplier. Our software treats the multiplier basically as a black box, however. So if improved
quantum circuits for F2n-multiplication become available, integrating them with the existing code should
not be a problem.

As final example, we take a look the square root computation (see Step 14 in the proof of Theorem 3.1)
for binary fields in the Digital Signature Standard:

Example 3.1 (ECDSA: square root computation). Table 3 lists depth and gate counts for the ancillae-free
square root computation for the binary fields in [19]. As can be seen, for the case of a “trinomial basis”
this operation can be implemented quite efficiently.

irreducible polynomial depth CNOT gates
1 + x3 + x6 + x7 + x163 104 7399

1 + x74 + x233 6 591
1 + x5 + x7 + x12 + x283 94 11657

1 + x87 + x409 2 613
1 + x2 + x5 + x10 + x571 273 76172

Table 3: Resource count of an ancillae-free square root computation for binary fields in [19].

4 Conclusion

The presented quantum circuit for point addition reduces an important cost parameter over the best previous
solution—the number of T -gates can be reduced by more than 60% without increasing T -depth. At the same
time, the number of qubits can be reduced. The overall depth increases linearly, but in view of the savings
achieved the depth increase looks acceptable. Aiming at the implementation of elliptic curve arithmetic for
cryptanalytic applications, the ability to synthesize (optimized) point addition circuits automatically seems
very helpful. We also hope that the concrete complexity bounds provided along with the capability to derive
actual circuits in an established format simplifies quantitative comparisons and stimulates follow-up research
on more efficient implementations.
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