Skip to main content
Log in

Quantum phase estimation with local amplified 1001 state based on Wigner-function method

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We demonstrate the utility of Wigner-function (WF) method in studying the quantum phase estimation. This phase estimation protocol for optical interferometry uses local amplified 1001 state as a probe state. Here, the probe state is obtained by local squeezing each mode of a single-photon-path-entangled state (1001 state). We derive analytically the WFs in describing the connection between input and output fields. In addition, the phase estimation is examined by using parity detection, and the results indicate that our strategy is super-resolving and supersensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hariharan, P.: Optical Interferometry. Elsevier, Amsterdam (2003)

    Google Scholar 

  2. Helstrom, C.W.: Quantum Detection and Estimation Theory. Mathematics in Science and Engineering. Elsevier Science, New York (1976)

    Google Scholar 

  3. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  4. Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406–411 (2011)

    Article  Google Scholar 

  5. Yurke, B., McCall, S.L., Klauder, J.R.: SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033–4054 (1986)

    Article  ADS  Google Scholar 

  6. Ahmedi, H., Chiang, C.: Quantum phase estimation with arbitrary constant-precision phase shift operators. Quantum Inf. Comput. 12, 0864–0875 (2012)

    Google Scholar 

  7. Zehnder, L.: Ein neuer Interferenzrefraktor. Z. Instrum. 11, 275–285 (1891)

    Google Scholar 

  8. Mach, L.: Ueber einen Interferenzrefraktor. Z. Instrum. 12, 89–93 (1892)

    Google Scholar 

  9. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)

    Article  ADS  Google Scholar 

  11. Bobo, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000)

    Article  ADS  Google Scholar 

  12. Dowling, J.P.: Quantum optical metrology—the lowdown on high-N00N States. Contemp. Phys. 49, 125–143 (2008)

    Article  ADS  Google Scholar 

  13. Gerry, C.C., Mimih, J.: The parity operator in quantum optical metrology. Contemp. Phys. 51, 497–511 (2010)

    Article  ADS  Google Scholar 

  14. Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)

    Article  ADS  Google Scholar 

  15. Campos, R.A., Gerry, C.C., Benmoussa, A.: Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements. Phys. Rev. A 68, 023810 (2003)

    Article  ADS  Google Scholar 

  16. Gerry, C.C., Mimih, J.: Heisenberg-limited interferometry with pair coherent states and parity measurements. Phys. Rev. A 82, 013831 (2010)

    Article  ADS  Google Scholar 

  17. Tan, Q.S., Liao, J.Q., Wang, X.G., Nori, F.: Enhanced interferometry using squeezed thermal states and even or odd states. Phys. Rev. A 89, 053822 (2014)

    Article  ADS  Google Scholar 

  18. Anisimov, P.M., Raterman, G.M., Chiruvelli, A., Plick, W.N., Huver, S.D., Lee, H., Dowling, J.P.: Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys. Rev. Lett. 104, 103602 (2010)

    Article  ADS  Google Scholar 

  19. Berrada, K., Abdel-Khalek, S., Eleuch, H., Hassouni, Y.: Beam splitting and entanglement generation: excited coherent states. Quantum Inf. Process. 12, 69–82 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Ekert, A.K., Knight, P.L.: Relationship between semiclassical and quantum-mechanical input-output theories of optical response. Phys. Rev. A 43, 3934–3938 (1991)

  21. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  ADS  Google Scholar 

  22. Hillary, M., O’Connell, R.F., Scully, M.O., Wigner, E.P.: Distribution functions in physics: fundamentals. Phys. Rep. 106, 121–167 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  23. Xu, X.X., Jia, F., Hu, L.Y., Duan, Z.L., Guo, Q., Ma, S.J.: Quantum interference between an arbitrary-photon Fock state and a coherent state. J. Mod. Opt. 59, 1624–1633 (2012)

    Article  ADS  Google Scholar 

  24. Xu, X.-X., Yuan, H.-C.: Optical parametric amplification of single photon: statistical properties and quantum interference. Int. J Theor. Phys. 53, 1601–1613 (2014)

  25. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  26. Fan, H.Y., Zaidi, H.R.: Application of IWOP technique to the generalized Weyl correspondence. Phys. Lett. A 124, 303–307 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ghobadi, R., Lvovsky, A., Simon, C.: Creating and detecting micro-macro photon-number entanglement by amplifying and deamplifying a single-photon entangled state. Phys. Rev. Lett. 110, 170406 (2013)

    Article  ADS  Google Scholar 

  28. Suda, M.: Quantum Interferometry in Phase Space. Springer, Berlin (2006)

    Google Scholar 

  29. Schleich, Wolfgang P.: Quantum Optics in Phase space. Wiley, Berlin (2001)

    Book  MATH  Google Scholar 

  30. Pezze, L., Smerzi, A.: Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. Phys. Rev. Lett. 100, 073601 (2008)

    Article  ADS  Google Scholar 

  31. Seshadreesan, K.P., Anisimov, P.M., Lee, H., Dowling, J.P.: Coherent mixed with squeezed vacuum light interferometry: parity detection hits the Heisenberg limit. New J. Phys. 13, 083026 (2011)

    Article  ADS  Google Scholar 

  32. Gerry, C.C.: Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime. Phys. Rev. A 61, 043811 (2000)

    Article  ADS  Google Scholar 

  33. Gerry, C.C., Campos, R.A.: Generation of maximally entangled photonic states with a quantum-optical Fredkin gate. Phys. Rev. A 64, 063814 (2001)

    Article  ADS  Google Scholar 

  34. Gao, Y., Wildfeuer, C.F., Anisimov, P.M., Lee, H., Dowling, J.P.: Super-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors. J. Opt. Soc. Am. B 27, 170–174 (2010)

    Article  ADS  Google Scholar 

  35. Lita, A.E., Miller, A.J., Nam, S.W.: Counting near-infrared single-photons with 95 % efficiency. Opt. Express 16, 3032 (2008)

    Article  ADS  Google Scholar 

  36. Spagnolo, N., Vitelli, C., Lucivero, V.G., Giovannetti, V., Maccone, L., Sciarrino, F.: Phase estimation via quantum interferometry for noisy detectors. Phys. Rev. Lett. 108, 233602 (2012)

    Article  ADS  Google Scholar 

  37. Zhang, X.X., Yang, Y.X., Wang, X.B.: Lossy quantum-optical metrology with squeezed states. Phys. Rev. A 88, 013838 (2013)

    Article  ADS  Google Scholar 

  38. Marino, A.M., Corzo Trejo, N.V., Lett, P.D.: Effect of losses on the performance of an SU(1,1) interferometer. Phys. Rev. A 86, 023844 (2012)

    Article  ADS  Google Scholar 

  39. Ono, T., Hofmann, H.F.: Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum. Phys. Rev. A 81, 033819 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Xiang Xu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11264018) and the Natural Science Foundation of Jiangxi Province of China (No. 20142BAB202001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, XX., Yuan, HC. Quantum phase estimation with local amplified 1001 state based on Wigner-function method. Quantum Inf Process 14, 411–424 (2015). https://doi.org/10.1007/s11128-014-0854-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0854-3

Keywords

Navigation