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We investigate some properties of multipartite entanglement of hypergraph states in purely 

hypergraph theoretical terms. We first introduce an approach for computing the concurrence 

between two specific qubits of a hypergraph state by using the so-called Hamming weights of 

several special subhypergraphs of the corresponding hypergraph. Then we quantify and 

characterize bipartite entanglement between each qubit pair of several special hypergraph states in 

terms of the concurrence obtained by using the above approach. Our main results include that (i) a 

graph g has a component with the vertex set { },i j  if and only if the qubit pair labeled by { },i j  

of the graph state g  is entangled; and (ii) each qubit pair of a special hypergraph state is 

entangled like the generalized W state. 
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I. INTRODUCTION 

Entanglement is one of the most extraordinary features of quantum theory. It lies at the very 

heart of quantum information theory [2] and is now regarded as a key physical resource in 

realizing many quantum information tasks. While the bipartite entanglement is well understood, 

the ultimate goal to cope with the properties of multipartite entanglement [1] of arbitrary 

multipartite states is far from being reached. Therefore, several special classes of entangled states 

have been introduced and identified to be useful for certain tasks. It is well known that graph 

states [3, 4] are an example of these classes. Any graph state can be constructed on the basis of a 

(simple and undirected) graph. Although graph states can describe a large family of entangled 

states including cluster states [5], GHZ states, stabilizer states [6], etc., it is clear that they cannot 

represent all entangled states. To go beyond graph states and still keep the appealing connection to 

graphs, Ref. [7] introduces an axiomatic framework for mapping graphs to quantum states of a 

suitable physical system, and extends this framework to directed graphs and weighted graphs. 

Several classes of multipartite entangled states, such as qudit graph states [8], Gaussian cluster 

states [9], projected entangled pair states [10], and quantum random networks [11], emerge from 

the axiomatic framework. Moreover, we generalize the above axiomatic framework to encoding 

hypergraphs into so-called quantum hypergraph states [12]. In [13], we also present an approach 

for mapping weighted hypergraphs into (up to local unitary transformations) locally maximally 

entangable states [14]. 

The main aim of this work is to investigate some properties of multipartite entanglement of 

hypergraph states in purely hypergraph theoretical terms. Several literatures have shown some 

approaches for this issue. For graph states, Ref. [3] presents various upper and lower bounds to the 

Schmidt measure [15] in graph theoretical terms. For hypergraph states, similar work is done in 

[12]. Moreover, Ref. [12] qualitatively studies the entanglement structure of hypergraph states in 



purely hypergraph theoretical terms. Ref. [16] introduces an approach for computing local entropic 

measure on qubit t of a hypergraph state by using the Hamming weight of the so-called t-adjacent 

subhypergraph. In this paper, we will use the concurrence [17] to quantify and characterize the 

bipartite entanglement between two specific qubits { },i j  of a hypergraph state g  in purely 

hypergraph theoretical terms. For this, we will present an approach for computing the concurrence 

between the qubit pair { },i j  of the state g  by using the so-called Hamming weights [16] of 

several special subhypergraphs of the corresponding hypergraph g. Then we will investigate some 

properties of the entanglement of several special hypergraph states in terms of the concurrence 

obtained by using the above approach. We will give a sufficiency and necessary condition of two 

qubits of a graph state being entangled in purely graph theoretical terms. We will also show that a 

special hypergraph state has the same entangled graph [18] as the generalized W state. 

This paper is organized as follows. In Sec. II, we recall notations of hypergraphs, hypergraph 

states, etc. In Sec. III, we present an approach for computing the concurrence between two specific 

qubits of a hypergraph state by means of the Hamming weights of some special subhypergraphs. 

In Sec. IV, we investigate some properties of the entanglement of several special hypergraph states 

by means of the concurrence. Section V contains our conclusions. 

 

II. PRELIMINARIES 

Formally, a hypergraph is a pair ( ),V E , where V is the set of vertices, ( )E V⊆℘  is the set 

of hyperedges and ( )S℘  denotes the power set of the set S. The set of all hypergraphs of n 

vertices is denoted by nΘ . The empty hypergraph is defined as ( ),V ∅ . If a hypergraph only 

contains the empty hyperedge ∅  or one-vertex hyperedges (called loops), it is trivial. The rank 

of a hypergraph g, denoted by ( )ran g , is the maximum cardinality of a hyperedge in g. Moreover, 

a hypergraph can be depicted by the visual form as shown in Fig. 1. Each vertex is represented as 

a dot while each hyperedge is represented as a closed curve which encloses the dots corresponding 

to vertices incident with the hyperedge. 

A hypergraph ( )', 'V E  is called a subhypergraph of ( ),V E if 'V V⊆  and 'E E⊆ . Let 

( ),g V E=  be a hypergraph. For a vertex t V∈  we define the t-adjacent subhypergraph tg  

of g as ( ),t t tg V E=  where { }tV V t= −  and { }{ }|tE e t t e e E= − ∈ ∧ ∈ . For any tow 

different vertices ,i j V∈  the { },i j -adjacent subhypergraph { },i j
g and the ( ),i j -adjacent 

subhypergraph ( ),i j
g  of g are respectively defined as follows: { } { } { }( ), , ,

,
i j i j i j

g V E= where 

{ } { },
,

i j
V V i j= − and { } { } { }{ },

, | ,
i j

E e i j i j e e E= − ⊆ ∧ ∈ ; and ( ) ( ) ( )( ), , ,
,

i j i j i j
g V E= where 



( ) { },
,

i j
V V i j= −  and ( ) { }{ },

|
i j

E e i i e j e e E= − ∈ ∧ ∉ ∧ ∈ .  

The vertices incident with the same hyperedge are referred to as being adjacent. A sequence of 

vertices 1 2, ,..., pv v v  such that kv and 1kv +  are adjacent for all 1 1k p≤ ≤ −  is called a path 

joining 1v  to pv . A hypergraph is connected if any two vertices are joined by a path. Otherwise, 

it is disconnected. A component of a hypergraph g is a connected subhypergraph contained in no 

other connected subhypergraph. Moreover, we define the sum of ( ),g V E=  and 

( )' ', 'g V E=  as ( )' ', 'g g V V E E∆ ≡ ∆∪  where 'E E∆  denotes the symmetric difference 

of E and E’, that is, ' ' 'E E E E E E∆ = −∪ ∩ . 

Denote the Pauli matrices by  
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≡  
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Let kZ  be the 2 2k k×  diagonal matrix which satisfies 

( )
1 2

1

k

k jj

j
Z

others

− =
= 


                           (2) 

where k is a nonnegative integer. Suppose that [ ] { }1,2,...,V n n= ≡  and e V⊆ . Then the 

n-qubit hyperedge gate eZ  is defined as 
n e

e
Z I

⊗ −
⊗  which means that 

e
Z  acts on the 

qubits in e while the identity I acts on the rest. An n-qubit hypergraph state g  can be 

constructed by ( ),g V E=  as follows. Each vertex labels a qubit (associated with a Hilbert 

space 
2
� ) initialized in ( )

1
0 1

2
φ = + ≡ + . The state g  is obtained from the initial 

state 
n⊗

+  by applying the hyperedge gate eZ  for each hyperedge e E∈ , that is, 

n

e

e E

g Z
⊗

∈

= +∏ .                               (3) 

Thus hypergraph states of n qubits are corresponding to { }( )2 , , | 0kZ k n+ ≤ ≤�  by the 

axiomatic approach shown in [12] while graph states are related with ( )2

2, ,Z+�  [7,12]. 

It is known that real equally weighted states [19] are equivalent to hypergraph states [12]. In 

fact, let [ ]V n=  and define a mapping c on ( )V℘  as 



( )
1

,
k

k e

e
e V c e x e

∈

= ∅
∀ ⊆ =  ≠ ∅


∏ .                       (4) 

Then we can construct a 1-1 mapping u  between hypergraphs and Boolean functions which 

satisfies ( ),g V E∀ = , 

( ) ( ) ( )1 2, ,..., n

e E

u g x x x c e
∈

= ⊕ .                       (5) 

where ⊕ denotes the addition operator over 2� . Thus we have 

( ) ( )
( )

2 1

0

1
1

2

n

e E
n c e

e u gn
xe E

g Z x ψ∈

−
⊗ ⊕

=∈

= + = − ≡∑∏             (6) 

where ( )u g
ψ  is just the real equally weighted state associate with the Boolean function ( )u g . 

Moreover, it is clear that , ' ng g∀ ∈Θ ,  

( ) ( ) ( )' 'u g g u g u g∆ = ⊕ .                      (7) 

It is known that the Hamming weight of a Boolean function f is defined as ( )1 1f −
 where 

S  denotes the cardinality of the set S. By (5), we also can define the Hamming weight of a 

hypergraph g with n vertices as 

( ) ( )1 1hw g f −≡                           (8) 

where ( ) ( )( )1 2 1 2, ,..., , ,...,n nf x x x u g x x x= . Ref. [16] introduces an approach for calculating 

the Hamming weight of g in purely hypergraph theoretical terms. 

 

III. CONCURRENCE AND HYPERGRAPH STATES 

Concurrence is a famous bipartite entanglement measure. Let φ  be a pure state of n qubits. 

The reduced density matrix ijρ on two different qubits { },i j of φ  is defined as 

{ } ( )all but ,ij i j
Trρ φ φ≡ . One can evaluate the so-called spin-flipped operator defined as 

� ( ) ( )*

ij y y ij y yρ σ σ ρ σ σ= ⊗ ⊗                         (9) 

where a star denotes a complex conjugation. Let 1λ , 2λ , 3λ  and 4λ  be eigenvalues of the 

matrix �
ijijρ ρ  in decreasing order. The concurrence ijC  between two qubits { },i j  is defined 

as 



{ }1 2 3 4max 0,ijC λ λ λ λ≡ − − −                  (10) 

Moreover, it is known that ijρ  is separable or disentangled if and only if 0ijC = [17]. 

Now let us show how to compute the concurrence between two specific qubits of an n-qubit 

hypergraph state. Let [ ]( ),g n E=  be a hypergraph. By (6), the reduced density matrix on two 

different qubits { },i j  of the corresponding hypergraph state g  can be written into 

{ } ( ) [ ]all but , 4 4
Trij rsi j

g g aρ
×

= =                    (11) 

where for any { }, 0,1, 2,3r s∈  
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and 

( ) ( ) ( )( ) ( ) ( )1 2, , , , ,...,i j nu g z y u g x x y u g x x x≡ ≡ .         (13) 

Note that i jz x x= . For instance, 2z =  when 1ix = and 0jx = . It is similar for y. Moreover, 

it is known that there are four (n-2)-valuable Boolean functions v, v’, v’’, and w such that 

( ) ( ) ( ) ( ) ( ) ( )1 2, ,..., ' ''n i j i ju g x x x x x v y x v y x v y w y= ⊕ ⊕ ⊕ .         (14) 

Then we can obtain that 
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By the definitions of the { },i j -adjacent and ( ),i j -adjacent subhypergraphs, (5), and (14), it is 

clear that 

( ) { }( ),i j
v y u g= , ( ) ( )( ),

'
i j

v y u g= , and ( ) ( )( ),
''

j i
v y u g= .           (16) 

From (7), (8), (15), and (16), we can obtain 
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−

= = − ∆ .   (17)                      

Thus it is import for obtaining the reduced density matrix ijρ  to calculate the Hamming weights 

of the subhypergraphs which occur in (17). It is known that the Hamming weight of a hypergraph 

can be evaluated by using the approach in [16]. Thus we can obtain the reduced density matrix 

ijρ  of g  in purely hypergraph theoretical terms. 

In the following, we show how to compute the concurrence of the reduced density matrix ijρ  of 

the hypergraph state g . Since all elements of ijρ  in (11) are real, the operator in (9) is equal 

to ( ) ( )ij y y ij y yρ σ σ ρ σ σ= ⊗ ⊗� . Clearly, 1λ , 2λ , 3λ  and 4λ  are corresponding to the 

squares of eigenvalues of the matrix ( )ij y yρ σ σ⊗  in decreasing order since 

( )
2

ij ij ij y yρ ρ ρ σ σ = ⊗ 
� . Thus we can obtain the concurrence of ijρ  according to (10). 

 

IV. SEVERAL SPECIAL HYPERGRAPH STATES 

In this section we discuss some properties of the entanglement of the hypergraph states 

corresponding to several special hypergraphs by means of the concurrence. These hypergraphs 

include the hypergraph whose rank is equal to two, the hypergraph [ ] [ ]{ }( )* ,ng n n= , and so on. 

 

A. The hypergraph whose rank equals to two 

If a hypergraph g is trivial, the concurrence between any two qubits of the hypergraph state g  

is zero since the state g  is disentangled or fully separable [12]. In the following, we calculate 

the concurrence between two specific qubits of the hypergraph state corresponding to a 

hypergraph whose rank equals to two. For convenience, we first define a special function 

{ }: 1,0,1nε Θ → −  as 

 ( ), ng V E∀ = ∈Θ , ( ) ( )
{ }

1

0 ran 1

1

E

g g

E

ε

= ∅


= ≥
− = ∅

.                   (18) 

Let [ ]( ),g n E=  be a hypergraph and ( )ran 2g = . Then we can obtain the reduced density 

matrix ijρ  on two different qubits [ ],i j n∈  of the hypergraph state g  as follows. 



Propostion 1.  

(i) If { }( ),
1

i j
gε = , then 

( )( ) ( )( ) ( ) ( )( ), , , ,

1

4
ij x x x xi j j i i j j i

I I g I g I g gρ ε σ ε σ ε σ σ = ⊗ + ⊗ + ⊗ + ∆ ⊗
 

.  (19) 

(ii) If { }( ),
1

i j
gε = − , then 

( )( ) ( )( ) ( ) ( )( ), , , ,

1

4
ij x z z x y yi j j i i j j i

I I g g g gρ ε σ σ ε σ σ ε σ σ = ⊗ + ⊗ + ⊗ + ∆ ⊗
 

.  (20) 

The above proposition can be described as follows. 

Propostion 1’. The reduced density matrix ijρ  satifies 

( )( ) ( ) { }( )
( )( )( ) { }( ){ 1, 1,, ,

, ,

1

4
g gi j i j

ij x z z xi j j i
I I g gε ε

δ δ
ρ ε σ σ ε σ σ− −= ⊗ + ⊗ + ⊗         

( ) ( )( ) ( ) { }( ) ( ) { }( ) }1, 1,, ,
, ,

g gi j i j
x z z xi j j i

g g ε ε
δ δ

ε σ σ σ σ− −   + ∆ ⊗ ⊗
   

.          (21) 

where , 1s tδ =  if s t= ; otherwise, , 0s tδ = . 

Proof. It is easy to obtain the reduced density ijρ  according to Sec. III and the properties of the 

Hamming weights of hypergraphs shown in [16]. For instance, we consider how to obtain ijρ  of 

g  when { } [ ] { } { }( ),
= , ,

i j
g n i j− ∅ , ( )( ),

ran 1
i j

g =  and ( ) [ ] { }( ),
= , ,

j i
g n i j− ∅ . By (18), 

it is clear that { }( ),
1

i j
gε = − , ( )( ),

0
i j

gε =  and ( )( ),
1

j i
gε = . Since ( )( ),

ran 1
i j

g =  

and ( ) [ ] { }( ),
= , ,

j i
g n i j− ∅ , it is known that ( ) ( )( ), ,

ran 1
i j j i

g g∆ = . This implies that 

( ) ( )( ), ,
0

i j j i
g gε ∆ =  by (18).  Similarly, we can obtain that { } ( )( ), ,

ran 1
i j i j

g g∆ = , 

{ } ( )( ), ,
1

i j j i
g gε ∆ = − , and { } ( ) ( )( ), , ,

ran 1
i j i j j i

g g g∆ ∆ = .  According to the proposition 4 in [16] 

and (17), we can obtain 

( )

1 1
0 0

4 4

1 1
0 0

14 4

1 1 4
0 0

4 4

1 1
0 0

4 4

ij z xI Iρ σ σ

 
 
 
 
 

= = ⊗ + ⊗ 
 −
 
 

− 
 

        (22) 

which is just the reduced density matrix corresponding to No. 4 shown in the table 2. Moreover, 

all possible cases of ijρ  of the hypergraph state g  are shown in the tables 1 and 2. This 



implies that (19)-(21) are true.                                                    ■  
Table 1. All possible values of the concurrence ijC  between two specific qubits [ ],i j n∈  of 

the hypergraph state g  where ( )ran 2g =  and { }( ),
1

i j
gε = . 

No. ( )( ),i j
gε  ( )( ),j i

gε  ( ) ( )( ), ,i j j i
g gε ∆  ijρ  ijC  

1 0 0 0 ( )
1

4
I I⊗  0 

2 0 0 1 ( )
1

4
x xI I σ σ⊗ + ⊗  0 

3 0 0 -1 ( )
1

4
x xI I σ σ⊗ − ⊗  0 

4 0 1 0 ( )
1

4
xI I I σ⊗ + ⊗  0 

5 0 -1 0 ( )
1

4
xI I I σ⊗ − ⊗  0 

6 1 0 0 ( )
1

4
xI I Iσ⊗ + ⊗  0 

7 -1 0 0 ( )
1

4
xI I Iσ⊗ − ⊗  0 

8 1 1 1 ( ) ( )
1

4
x xI Iσ σ+ ⊗ +  0 

9 1 -1 -1 ( ) ( )
1

4
x xI Iσ σ+ ⊗ −  0 

10 -1 1 -1 ( ) ( )
1

4
x xI Iσ σ− ⊗ +  0 

11 -1 -1 1 ( ) ( )
1

4
x xI Iσ σ− ⊗ −  0 

 

According to Sec. III, we can obtain the concurrence ijC  by calculating the eigenvalues of 

( )ij y yρ σ σ⊗ . All possible values of ijC  of the hypergraph state g  are also shown in the 

tables 1 and 2. Moreover, we can obtain the following proposition by these two tables. 

Proposition 2. If a hypergraph g has a component whose vertex set is { },i j , then ijρ  of the 

hypergraph state g  is entangled. 

Note the converse of the above proposition is not true since each qubit pair of the hypergraph 

state 
*

ng  is entangled, which is shown in Sec. IV (B). Now let us discuss some properties of the 

entanglement of graph states by means of the concurrence. By the above proposition, we can give 



a sufficiency and necessary condition for two qubits of a graph state being entangled as follows. 

Corollary 3. A graph g has a component with the vertex set { },i j  if and only if ijρ  of the 

corresponding graph state g  is entangled. 

From the above corollary, we can also obtain the following corollary. 

Corollary 4. Suppose that [ ]( ),g n E= is a connected graph and 3n ≥ . Then for any two 

deferent vertices [ ],i j n∈  the reduced density matrix ijρ  of the graph state g   is 

separable.  

 

Table 2. All possible values of the concurrence ijC  between two specific qubits [ ],i j n∈  of 

the hypergraph state g  where ( )ran 2g =  and { }( ),
1

i j
gε = − . 

No. ( )( ),i j
gε  ( )( ),j i

gε  ( ) ( )( ), ,i j j i
g gε ∆  ijρ  ijC  

1 0 0 0 ( )
1

4
I I⊗  0 

2 0 0 1 ( )1

4
y yI I σ σ⊗ + ⊗  0 

3 0 0 -1 ( )1

4
y yI I σ σ⊗ − ⊗  0 

4 0 1 0 ( )
1

4
z xI I σ σ⊗ + ⊗  0 

5 0 -1 0 ( )
1

4
z xI I σ σ⊗ − ⊗  0 

6 1 0 0 ( )
1

4
x zI I σ σ⊗ + ⊗  0 

7 -1 0 0 ( )
1

4
x zI I σ σ⊗ − ⊗  0 

8 1 1 1 ( )( )
1

4
z x x zI I I Iσ σ σ σ⊗ + ⊗ ⊗ + ⊗  1 

9 1 -1 -1 ( )( )
1

4
z x x zI I I Iσ σ σ σ⊗ − ⊗ ⊗ + ⊗  1 

10 -1 1 -1 ( )( )
1

4
z x x zI I I Iσ σ σ σ⊗ + ⊗ ⊗ − ⊗  1 

11 -1 -1 1 ( )( )
1

4
z x x zI I I Iσ σ σ σ⊗ − ⊗ ⊗ − ⊗  1 

 

The above corollary has been proved in [20] by using a different approach. It is known that 

many entanglement criteria (which are shown in [20] and its references) use only bipartite 

correlations for the entanglement detection. Thus these criteria must fail to recognize in graph 



states of three or more qubits [20]. 

Ref. [18] introduces a concept of an entangled graph such that each qubit of a multipartite 

system is associated with a vertex, while a bipartite entanglement between two specific qubits is 

represented by an edge between these vertices. For an n-qubit state, its entangled graph can 

visually show how a bipartite entanglement is “distributed” in n qubits. By the corollaries 3 and 4, 

we can obtain the following proposition. 

Proposition 5. Suppose that [ ]( ),g n E= is a graph. Then the entangled graph 

[ ]( ), GG n E=  of the graph state g   satisfies that each vertex is adjacent with at most one 

vertex, that is, for each [ ]i n∈  

{ }{ }| , 1Gj i j E∈ ≤ .                             (23) 

By the above proposition, it is easy to draw all entangled graphs of n-qubit graph states. 

Entangled graphs of three-qubit graph states have been shown in [21]. All Entangled graphs of 

four-qubit graph states are shown in Fig. 2. 

 

B. The hypergraph [ ] [ ]{ }( )* ,ng n n=  

In the following, we calculate the concurrence of the reduced density matrix ijρ  on two 

specific qubits [ ],i j n∈  of the hypergraph state 
*

ng . According to the proposition 1 in [16] 

and (17), we can obtain that 

1

1

1

1 1 1

1 1 1 1 1

4 4 4 4 2

1 1 1 1 1

4 4 4 4 2

1 1 1 1 1

4 4 4 4 2
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4 2 4 2 4 2 4

n

n
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ρ
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−

−

− − −

 
− 

 
 −
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 −
 
 

− − − 
 

.                 (24) 

Then we can get 
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1 1 1

1 1 1 1 1

2 4 4 4 4
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2 4 4 4 4
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2 4 4 4 4

1 1 1 1 1 1 1

4 4 2 4 2 2 4

n

n

ij y y

n

n n n

ρ σ σ

−

−

−

− − −

 
− − 

 
 − −
 

⊗ =  
 − −
 
 

− − − − 
 

.           (25) 

Let us calculate four eigenvalues of ( )ij y yρ σ σ⊗ . This means that we should solve the 



equation ( )det 0ij y y I Iρ σ σ λ ⊗ − ⊗ =  . By computing, we can obtain 

( ) 2

1 /2 1 /2

1 1 1 1
det

2 2 2 2
ij y y n n n n

I Iρ σ σ λ λ λ λ
− −

   ⊗ − ⊗ = − − − +      
   (26) 

Thus it is known that four eigenvalues of ( )ij y yρ σ σ⊗  are respectively
1 /2

1 1

2 2n n−
+  

1 /2

1 1

2 2n n−
− , 0 and 0. According to Sec. III, the eigenvalues of ij ijρ ρ� , in decreasing order, are 

2

1 1 /2

1 1

2 2n n
λ

−

 
= + 
 

, 

2

2 1 /2

1 1

2 2n n
λ

−

 
= − 
 

 and 3 4 0λ λ= = . From (10), we can obtain that 

 
/2

2
0

2
ij n

C = ≠                             (27) 

Therefore we can get the following proposition. 

Proposition 6. Each qubit pair of the hypergraph state
*

ng  is entangled. 

It is clear that the entangled graph of the state
*

ng  is a complete graph nK  with n vertices. 

Ref. [18] shows that the entangled graph of the generalized W state 

( )
1

00...01 00...10 ... 10...00nW
n

≡ + + +  is also nK . Thus each qubit pair of the 

state 
*

ng  is entangled like the state nW . 

 

V. CONCLUSIONS 

We first use the Hamming weight of several special subhypergraphs to calculate the 

concurrence between two specific qubits of a hypergraph state. Then we discuss the properties of 

the bipartite entanglement of several special hypergraph states by using the concurrence. Our 

research reveals that the sufficiency and necessary condition of a qubit pair { },i j  of a graph 

state being entangled is that the corresponding graph has a component with the vertex set { },i j . 

Moreover, we also show that the hypergraph state 
*

ng  has the same entangled graph as the 

generalized W state nW . It is interesting that every qubit pair of the state 
*

ng  is entangled 

like nW  while no hypergraph state of n qubits is equivalent to the state nW  under local 

unitraries [13]. This property of bipartite entanglement of the state nW  has been used in some 

quantum information processing tasks. Thus it is helpful for these tasks that the W state nW  is 



replaced to the state 
*

ng  which might be prepared more easily than the state nW  in some 

cases. 
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Figure 1. Examples of hypergraphs. The four-vertex hypergraph g  in (a) has four hyperedges: 

{ }1,2 ,{ }2,3 ,{ }3, 4  and{ }2,3, 4 . In (b), the hypergraph { }3,4
g  with two vertices also has 

two hyperedges: ∅  and { }2 . Only one hyperedge, i.e., { }2 , constitutes the hyperedge set 

of ( )3,4
g  in (c). The three-vertex hypergraph 4g  in (d) has two hyperedges: { }3 and 

{ }2,3 . Moreover, the hypergraphs { }3,4
g , ( )3,4

g , and 4g  are respectively corresponding to 

the { }3, 4 -adjacent, ( )3, 4 -adjacent, and 4-adjacent subhypergaphs of g . Clearly, the 

( )4,3 -adjacent subhypergaph of g  is empty. 

 

 

 

 

 

Figure 2. Ten different entangled graphs associated with four-qubit graph states. 
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