Skip to main content
Log in

The excitonic qubit on a star graph: dephasing-limited coherent motion

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A phenomenological model is used for describing how a fluctuating bath modifies the way an exciton promotes quantum state transfer on a star graph. A markovian generalized master equation is first established. Then, it is solved exactly for studying specific elements of the exciton reduced density matrix. These elements, called coherences, characterize the ability of the exciton to develop qubit states that are superimpositions involving the vacuum and the local one-exciton states. Although dephasing-limited coherent motion is clearly evidenced, it is shown that both the decoherence and the information transfer are very sensitive to the number of branches that form the star. The larger the branch number is, the slower is the decoherence and the better is the efficiency of the transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bennet, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature (London) 404, 247 (2000)

    Article  ADS  Google Scholar 

  2. Burgarth, D.: Quantum state transfer and time-dependent disorder in quantum chains. Eur. Phys. J. Spec. Top. 151, 147 (2007)

    Article  Google Scholar 

  3. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  4. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  5. Bose, S.: Quantum communication through spin chain dynamics: an introductory overview. Contemp. Phys. 48, 13 (2007)

    Article  ADS  Google Scholar 

  6. Semio, F.L., Furuya, K., Milburn, G.J.: Vibration-enhanced quantum transport. New J. Phys. 12, 083033 (2010)

    Article  ADS  Google Scholar 

  7. Reslen, J., Bose, S.: End-to-end entanglement in Bose–Hubbard chains. Phys. Rev. A 80, 012330 (2009)

    Article  ADS  Google Scholar 

  8. Haffner, H., Roos, C.F., Blatt, R.: Quantum computing with trapped ions. Phys. Rep. 469, 155 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Huo, M.X., Li, Y., Song, Z., Sun, C.P.: The Peierls distorted chain as a quantum data bus for quantum state transfer. Eur. Phys. Lett. 84, 30004 (2008)

    Article  ADS  Google Scholar 

  10. Plenio, M.B., Hartley, J., Eisert, J.: Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom. New J. Phys. 6, 36 (2004)

    Article  ADS  Google Scholar 

  11. Pouthier, V.: Vibrational exciton mediated quantum state transfer: simple model. Phys. Rev. B 85, 214303 (2012)

    Article  ADS  Google Scholar 

  12. Pouthier, V.: Vibrons in finite size molecular lattices: a route for high-fidelity quantum state transfer at room temperature. J. Phys. Condens. Matter 24, 445401 (2012)

    Article  ADS  Google Scholar 

  13. Pouthier, V.: A qubit coupled with confined phonons: the interplay between true and fake decoherence. J. Chem. Phys. 139, 054103 (2013)

    Article  ADS  Google Scholar 

  14. Mulken, O., Bierbaum, V., Blumen, A.: Coherent exciton transport in dendrimers and continuous-time quantum walks. J. Chem. Phys. 124, 124905 (2006)

    Article  ADS  Google Scholar 

  15. Agliari, E., Blumen, A., Mulken, O.: Quantum-walk approach to searching on fractal structures. Phys. Rev. A 82, 012305 (2010)

    Article  ADS  Google Scholar 

  16. Mulken, O., Blumen, A.: Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502, 37 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. Pouthier, V.: Exciton localization–delocalization transition in an extended dendrimer. J. Chem. Phys. 139, 234111 (2013)

    Article  ADS  Google Scholar 

  18. Pouthier, V.: Disorder-enhanced exciton delocalization in an extended dendrimer. Phys. Rev. E 90, 022818 (2014)

    Article  ADS  Google Scholar 

  19. Astruc, D., Boisselier, E., Ornelas, C.: Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 110, 1857 (2010)

    Article  Google Scholar 

  20. Mukamel, S.: Trees to trap photons. Nature 388, 425 (1997)

    Article  ADS  Google Scholar 

  21. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the hamiltonian NAND tree. Theory Comput. 4, 169 (2008)

    Article  MathSciNet  Google Scholar 

  24. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process 1, 35 (2002)

    Article  MathSciNet  Google Scholar 

  25. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009)

    Article  ADS  Google Scholar 

  26. Jackson, S.R., Khoo, T.J., Strauch, F.W.: Quantum walks on trees with disorder: decay, diffusion, and localization. Phys. Rev. A 86, 022335 (2012)

    Article  ADS  Google Scholar 

  27. Cardoso, A.L., Andrade, R.F.S., Souza, A.M.C.: Localization properties of a tight-binding electronic model on the Apollonian network. Phys. Rev. B 78, 214202 (2008)

    Article  ADS  Google Scholar 

  28. Xu, X.P., Li, W., Liu, F.: Coherent transport on Apollonian networks and continuous-time quantum walks. Phys. Rev. E 78, 052103 (2008)

    Article  ADS  Google Scholar 

  29. Salimi, S.: Continuous-time quantum walks on star graphs. Ann. Phys. 324, 1185 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Xu, X.P.: Exact analytical results for quantum walks on star graphs. J. Phys. A Math. Theory 42, 115205 (2009)

    Article  ADS  Google Scholar 

  31. Ziletti, A., Borgonovi, F., Celardo, G.L., Izrailev, F.M., Kaplan, L., Zelevinsky, V.G.: Coherent transport in multibranch quantum circuits. Phys. Rev. B 85, 052201 (2012)

    Article  ADS  Google Scholar 

  32. Anishchenko, A., Blumen, A., Mulken, O.: Enhancing the spreading of quantum walks on star graphs by additional bonds. Quantum Inf. Process 11, 1273 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. May, V., Kuhn, O.: Charge and Energy Transfer Dynamics in Molecular Systems. Wiley-VCH Verlag, Berlin (2000)

    Google Scholar 

  34. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2007)

    Book  MATH  Google Scholar 

  35. Pouthier, V.: Phonon anharmonicity-induced decoherence slowing down in exciton phonon systems. J. Phys. Condens. Matter 22, 25560 (2010)

    Google Scholar 

  36. Haken, H., Strobl, G.: An exactly solvable model for coherent and incoherent exciton motion. Z. Phys. 262, 135 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  37. Blumen, A., Silbey, R.: Exciton line shapes and migration with stochastic exciton lattice coupling. J. Chem. Phys. 69, 3589 (1978)

    Article  ADS  Google Scholar 

  38. Jackson, B., Silbey, R.: Line shapes and transport for excitons with stochastic coupling. J. Chem. Phys. 75, 3293 (1981)

    Article  ADS  Google Scholar 

  39. Rips, I.: Stochastic models of exciton transport: the Haken–Strobl model. Phys. Rev. E 47, 67 (1993)

    Article  ADS  Google Scholar 

  40. Pfluegl, W., Palenberg, M.A., Silbey, R.: Diffusion coefficient for disordered systems with coupled coherent and incoherent transport in one dimension. J. Chem. Phys. 113, 5632 (2000)

    Article  ADS  Google Scholar 

  41. Xu, X.P.: Coherent exciton transport and trapping on long-range interacting cycles. Phys. Rev. E 79, 011117 (2009)

    Article  ADS  Google Scholar 

  42. Mendonca, P.E.M.F., Napolitano, R.J., Marchiolli, M.A., Foster, C.J., Liang, Y.C.: Alternative fidelity measure between quantum states. Phys. Rev. A 78, 052330 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Pouthier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouthier, V. The excitonic qubit on a star graph: dephasing-limited coherent motion. Quantum Inf Process 14, 491–509 (2015). https://doi.org/10.1007/s11128-014-0891-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0891-y

Keywords

Navigation