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We present an alternate derivation of the geometric phase gate based on the ac Stark shift for
two qubits coupled to a shared cavity mode. Our derivation differs from the standard one in that
the qubit-light coupling occurs purely as an ac Stark shift, rather than a state-dependent force. We
derive expressions for the geometric phases induced on the qubit states arising from the displacement
of coherent light. Simple analytic expressions are obtained for sinusodial driving of the cavity field.

PACS numbers:

I. INTRODUCTION

Quantum correlations are of utmost importance and
one of the indispensable ingredients of quantum infor-
mation processing [1–5]. Production of fast and robust
two or multi qubit gates are ultimate goals for storing and
executing quantum information [6]. The inevitable inter-
action between system and its environment (reservoir)
makes the quantum states fragile. This feature of quan-
tum states (systems) impairs their performance when
used as quantum logic gates, and hence may limit their
application for quantum information. Several schemes
have been suggested to mitigate this problem. Geo-
metric quantum computation is one of the proposal to
achieve fault tolerant quantum computation [7]. In geo-
metric quantum computation information is encoded on
the energy levels of the atoms and a quantum gate is
used to drive the atom along a cyclic path or in a closed
loop. In doing so, the atomic states accumulate geomet-
ric phases [8] in addition to a dynamical phase. Because
geometric phases are robust against environmental fluc-
tuations, they have found applications in the geometric
phase gate for fault tolerant computation. These have
been realised and studied in systems such as ions un-
der state dependent forces [9–14], quantum dots [15–17],
semiconductors materials [18], microwave potentials [19],
nuclear magnetic resonance [20–22], and superconducting
materials [23–25].

In this paper we consider an alternate derivation of
the geometric phase gate for two qubits interacting with
a common bosonic mode. Specifically, we consider the
so-called “unconventional” geometric phase gate where
the bosonic mode is manipulated in order to produce en-
tanglement at the end of the operation. In the standard
derivation [10, 12], the form of the interaction between
the optical mode and the qubits is a state-dependent
force, of the form

Hint ∝ (a+ a†)(σz1 + σz2), (1)

where a is the annihilation operator for the bosonic mode
and σzi are the Pauli operators for each of the qubits
labeled by i = 1, 2. Instead of the state-dependent force,

FIG. 1: Schematic experimental configuration for the geomet-
ric phase gate. Two qubits are placed in a cavity such that
an ac Stark shift occurs on the energy levels. The geomet-
ric phase gate then performed by the following procedure. A
laser is applied to the cavity such that both qubits are illu-
minated, and controlled such as to follow the evolution |α(t)〉
for a time t = [0, T ]. The phase (10) is induced at the end of
the evolution.

in this paper we consider a coupling of the form of an ac
Stark shift

Hint ∝ a†a(σz1 + σz2). (2)

We show that this type of interaction between the qubits
and the bosonic field can be equally used to implement
the geometric phase gate. Our derivation follows the
methods presented in Ref. [12], based on an exact solu-
tion to the dynamics of the coherent bosonic field under a
time-dependent displacement. Exact expressions for the
phase picked up by the qubit states are derived, and an
example solution is given for the necessary conditions of
the evolution.

This paper is organized as follows. In Sec. II we
present a modified derivation of the geometric phase
gate using the ac Stark shift rather than state-dependent
forces. In Sec. III we describe a concrete implementation
of the optical pulses that satisfy the necessary conditions
described in Sec. II. In Sec. IV we show an experimen-
tal implementation for our proposed scheme, discussing
which energy levels are used. We finally conclude the
results of the paper in Sec. V.

II. GEOMETRIC PHASE GATE WITH AC
STARK SHIFTS

Let us consider that we have the following Hamiltonian
available between two qubits

H =h̄ω0a
†a+G (σz1 + σz2) a†a

− F (t)√
2

(
aei(ω0−∆)t + a†e−i(ω0−∆)t

)
. (3)
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Here a is an annihilation operator for a bosonic mode,
σz1,2 are Pauli z-operators for qubits 1 and 2 respectively.
The first term in (3) gives the energy of the bosonic mode
h̄ω0. The second is a diagonal coupling of magnitude G
between the bosonic and qubit degrees of freedom. For
an implementation with cold atoms, this may come from
an ac Stark shift of the atomic levels due to the bosonic
field. The last term is the displacement operator for the
bosonic mode that is controllable with a time-dependent
coefficient F (t). In the rotating frame ar = aeiω0t the
Hamiltonian is

H = G (σz1 + σz2) a†rar −
F (t)√

2

(
are
−i∆t + a†re

i∆t
)

(4)

such that relative to the phase of the optical field the
force term F (t) is rotating with a detuned frequency ∆.

The precise physical realization of (3) will be described
in section IV. The basic idea of the scheme may be un-
derstood as given in Figure 1. Two qubits are placed
in a cavity and illuminated with the same laser field, in
a time varying coherent state |α(t)〉. The laser is far
detuned from the transition to an excited state of the
qubit, such that there is an ac Stark shift to the energy
level, giving rise to the second term in (3). The scheme
then illuminates the two qubits with an initial coherent
state |α(0)〉 = |α0〉, and is moved through phase space of
(Re(α), Im(α)) such that the state at the end of the evolu-
tion is the same as the initial state |α(T )〉 = eiΦ(T )|α0〉,
where Φ(T ) is a phase that depends upon the state of
the qubits (see Figure 2). Depending on the state of the
qubits, different phases are picked up, thus creating en-
tanglement between the qubits. A similar configuration
of qubits in cavities was proposed in Ref. [27] although
our derivation of the geometric phases does not follow
the same approach.

Following Ref. [12], we may derive the effective phase
generated by the above procedure. The Heisenberg equa-
tions of motion for the bosonic mode is

da

dt
= − i

h̄

[
(h̄ω0 +Gσz1 +Gσz2) a− F (t)√

2
e−i(ω0−∆)t

]
.

(5)
This may be explicitly solved to give

a(t) = e−iΩt
[
a(0) +

i√
2h̄

∫ t

0

eiΩτF (τ)dτ

]
where

Ω = ∆ +G(σz1 + σz2)/h̄. (6)

Starting from an initial coherent state |α0〉, the above
creates a time dependent dispacement |α(t)〉 according
to

α(t) = e−iΩt
[
α0 +

i√
2h̄

∫ t

0

eiΩτF (τ)dτ

]
. (7)

We consider the force F (t) to be applied for a time T , at
the end of which we demand that the coherent state be

FIG. 2: Displacement of coherent field |α(t)〉 under the force
F (t).

returned to its initial state |α(T )〉 = |α0〉. Thus we have
the condition ∫ T

0

eiΩτF (τ)dτ = 0. (8)

Following the same derivation as in Ref. [10, 12], the
phase picked up by the coherent state is

Φ (T ) =
1

2h̄2 Im

∫ T

0

dτ1

∫ τ1

0

dτ2e
iΩτrF (τ1)F (τ2) . (9)

where τr = τ1 − τ2. The exponential term in the above
equation may be expanded and we obtain the following
expression,

Φqubit (T ) = φ0 + φ1 (σz1 + σz2) + φ2σ
z
1σ

z
2

where

φ0 =
1

2h̄2

∫ T

0

dτ1

∫ τ1

0

dτ2 sin(∆τr) cos2

(
Gτr
h̄

)
F (τ1)F (τ2) ,

φ1 =
1

4h̄2

∫ T

0

dτ1

∫ τ1

0

dτ2 sin

(
2Gτr
h̄

)
cos(∆τr)F (τ1)F (τ2)

φ2 = − 1

2h̄2

∫ T

0

dτ1

∫ τ1

0

dτ2 sin(∆τr) sin2

(
Gτr
h̄

)
F (τ1)F (τ2) .

(10)

In our unconventional geometric phase gates the geomet-
ric and dynamical phases are proportional. We are not
going into details of this proportionality, since it has been
explicitly explained in [12]. We see that the phase in-
cludes a term proportional to σz1σ

z
2 , which produces an

entangling gate as desired. In addition we have constant
and terms proportional to σzi , which give an global phase
and single qubit rotations respectively. Assuming single
qubit control of the qubits are possible, the φ1 terms may
be cancelled off as desired by application of the reverse
rotations which cancel these factors.

III. EXAMPLE SOLUTION

We now discuss a concrete example for implementing
the two qubit entanglement. Unlike the formulation of
Ref. [10, 12], Ω is state dependent so we now give an
example of how (8) can be satisfied. Assuming that the
detuning ∆ can be freely chosen, let us select the condi-
tion

h̄∆ = 2Gn (11)

where n is an integer. The frequencies that (6) may take
are then

h̄Ω = 2G(n− 1), 2Gn, 2G(n+ 1) (12)
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Noting that all the frequencies are even multiples of G/h̄,
(8) may then be satisfied by choosing

F (τ) = F0 sin(Gmτ/h̄)

T =
2πh̄

G
(13)

where m is an odd integer and F0 is an energy amplitude
that may be freely chosen.

The phases induced by geometric phase gates may then
be evaluated exactly to give

φ0 = −F
2
0 nπ

G2

(
8− 2m2 − 24n2 +

(
m2 − 4n2

)2
(m2 − 4n2)M

)
,(14)

φ1 = −F
2
0 π

G22


√
M + (4mn)

2

M

 , (15)

φ2 = −F
2
0 2nπ

G2

(
4n2 + 3m2 − 4

(m2 − 4n2)M

)
, (16)

where M =
(
m2 − 4 + 4n2

)2 − (4mn)
2
.

IV. EXPERIMENTAL CONFIGURATION

Following the considerations of the previous sections,
it is apparent that the primary ingredient necessary for
the geometric phase gate is the Hamiltonian (3). As
already discussed in section II, the harmonic oscillator
is a phase-controllable laser which illuminates both the
qubits (Figure 1). The displacement terms in (3) which
realize the geometric path of the laser in phase space can
be performed using standard quantum optical methods
[26]. We thus describe in more detail the atomic config-
uration that would realize the Hamiltonians.

Consider two qubits, realized for example via cold
atoms in traps [27]. A circularly polarized laser pulse
is detuned from the atomic resonance transition between
one of the hyperfine ground states and an excited state
is incident on the atoms [28, 29]. The Hamiltonian de-
scribing the composite system within the single mode and
rotating wave approximation [30–32] is given by

H = Hlight +Hatom +Hatom-light

where

Hlight = h̄ωa†a

Hatom = Ec|c〉〈c|+ Ed|d〉〈d|+ Ec̄|c̄〉〈c̄|
Hatom-light = g

(
a|c̄〉〈c|+ a†|c〉〈c̄|

)
(17)

Here, c and d are the logical states of the qubit, and c̄ is
an excited state. These transition occurs with amplitude
g, and Ec,d,c̄ are the energies of the levels involved.

Assuming that the population of the atoms found in
the excited state is negligibly small, the dynamics of the

excited state can be adiabatically eliminated. The re-
sulting effective Hamiltonian describing dynamics of the
ground states are

Heff = G(σz + 1)a†a (18)

where ∆ = Ec̄ − Ec − h̄ω0, σz = |c〉〈c| − |d〉〈d| and

G =
g2

∆
. (19)

There is an additional energy offset to the bare photon
energy h̄ω, and thus we have

h̄ω0 = h̄ω +G. (20)

We now compare our results with experimental pa-
rameters. The primary constraints are the quality of
the cavity and spontaneous emission of the atoms, which
adds a decoherence timescale which the operation must
be completed within. For example, using experimental
parameters associated with 85Rb, we have (g, κ, γ)/2π =
(16, 1.4, 3)MHz, where κ is the cavity field decay rate and
γ is the spontaneous emission rate [33]. The effective de-
coherence rate due to spontaneous emission is given by
[34]

Γeff =
γg2

∆2
. (21)

The effects of spontaneous emission may therefore be
suppressed by choosing a detuning ∆ > g. Taking
∆ = 2g, we then obtain parameters (G, κ,Γeff)/2π =
(8, 1.4, 0.75)MHz. As the timescale of the geometric
phase gate is determined by G in (13) we see that the op-
eration may be completed within the decoherence times
set by the cavity and spontaneous emission. Decoher-
ence/noise can be induced in the experimental implemen-
tation of our scheme due to two major factors, imperfect
coherent source and time required for the double inter-
action of light and qubit to execute the gate. So in or-
der to minimize the noise, fast implementation of proto-
col is essential and demands repetition rate much faster
than trap frequency of qubit. For the case of ion trapped
systems, obtaining such coherent sources are potentially
problematic. But recently it has been shown that the
high repetition rate lasers are possible with fibre tech-
nology [35], that can help to boost up the speed of gate.
Also our scheme does not rely on the perfect resonant
coupling (π transitions) so the imperfectness in coherent
source can be overlooked for the time being until better
options are ready.

V. CONCLUSION

We have reexamined the two qubit geometric phase
gate for two qubits interacting with a common bosonic
mode. The association of geometric phases with each
qubit produces an entangled state between qubits. The
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requirement is the presence of a controllable coherent
light source which traverses certain geometry in phase
space, and an ac Stark shift interaction. The geomet-
ric phase derived here uses only the ac Stark shift in the
Hamiltonian, without the state-dependent forces that are
usually assumed. While in our example solution we used
a sinusodial control of the optical field, this can be gener-
alized to other forms. Our formulation may be more use-
ful in cases where an ac Stark shift is more conveniently
implemented, rather than state-dependent forces. This

formulation could be generalized to other systems, such
as quantum dots placed in a microcavity [16]. Another
application is to atomic BEC systems, where an ac Stark
shift is readily realized via coupling of cavities to optical
transitions of atoms [36].
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