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Quantum walk with a general coin: Exact solution and asymptotic properties
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In this paper we present closed-form expressions for the wave function that governs the evolution
of the discrete-time quantum walk on a line when the coin operator is arbitrary. The formulas were
derived assuming that the walker can either remain put in the place or proceed in a fixed direction but
never move backward, although they can be easily modified to describe the case in which the particle
can travel in both directions. We use these expressions to explore the properties of magnitudes
associated to the process, as the probability mass function or the probability current, even though
we also consider the asymptotic behavior of the exact solution. Within this approximation, we will
estimate upper and lower bounds, consider the origins of an emerging approximate symmetry, and
deduce the general form of the stationary probability density of the relative location of the walker.

PACS numbers: 02.50.Ey, 05.40.Fb, 03.67.Lx

I. INTRODUCTION

Quantum walks [1–7] can be thought as the quantum-
mechanical version of the classical random walk, the ran-
dom process that models the trajectory of a particle that
at each time step moves either leftward or rightward a
fixed distance. In both variants a coin toss decides the
way to go, being quantum the coin in the former case.
The origins of quantum walks are linked with the field

of quantum computation, in particular with the design
of quantum algorithms, because genuine quantum algo-
rithms running on quantum computers can solve prob-
lems more efficiently than their classic analogues [8, 9].
In particular, quantum walks have proven to be very well
suited to develop search methods [10–13]. However, the
interest on quantum walks has exceeded this scope, and
attracted the attention of many researchers from distant
areas as, for example, game theory [14–16]. Therefore,
the richer mathematical analysis of the process we make,
the wider are the possible applications.
The study of the behavior of the wave function that

governs the evolution of the quantum walker when the
coin-related features are arbitrary is not new [17–19], and
some general properties have been analyzed in great de-
tail [20–22]. And while analytic formulas for the wave
function in terms of integral transforms do exist [23, 24],
a general, closed-form solution was still missing. In ab-
sence of such a solution, asymptotic expressions have
been also derived in the past [25–28].
Here we revisit the problem of the quantum walker

and tackle the issue of finding its complete solution by
looking at it from a slightly different, not very common
perspective [29]: we consider that the particle may either
move rightward or remain still. In a previous work [30] we
have shown how this alternative formulation (the process
exhibits translational invariance) can encourage the use
of computational approaches not exploited before.

∗ E-mail: miquel.montero@ub.edu

This paper is organized as follows. In Sec. II we give
a brief introduction to the formalism used in our study
of the discrete-time quantum walk on a line. In Sec. III
we present closed-form formulas for computing the wave
function in the most general situation. In Sec. IV we
analyze some general properties of the process with the
aid of these explicit expressions. Section V is devoted
to the analysis of different asymptotic approximations
for the probability mass function. Particular emphasis
is made on the emergence of a seeming symmetry, and
on the general expression for the stationary probability
density of the relative position of the walker. Conclusions
are drawn in Sec. VI, and we have left for the appendices
the most technical aspects of our derivations.

II. THE PROCESS

This section pinpoints the general framework of
the unidirectional discrete-time quantum walk on a
line [30]. Let HP be the Hilbert space of discrete par-
ticle positions in one dimension, spanned by the basis
{|Ψn〉 : n ∈ {0} ∪ Z

+}. Let HC be the Hilbert space
of chirality, or “coin” states, spanned by the orthonor-
mal basis {|0〉, |1〉}, a qubit. A unidirectional discrete-
time, discrete-space quantum walk on the Hilbert space
H ≡ HC ⊗HP consists of a unitary operator ÛC ,

ÛC ≡ eiα cos θ|0〉〈0|+ e−iϕ sin θ|0〉〈1|
+ eiϕ sin θ|1〉〈0| − e−iα cos θ|1〉〈1|, (1)

acting on the coin state, the throw of the quantum coin,
followed by the deterministic updating of the position
depending on the qubit value:

B̂ (|q〉 ⊗ |Ψn〉) = |q〉 ⊗ |Ψn+q〉.

Explicitly, B̂ is a nondecreasing shift operator defined in
H, which takes the following form:

B̂ ≡ |0〉〈0| ⊗
∞
∑

n=0

|Ψn〉〈Ψn|+ |1〉〈1| ⊗
∞
∑

n=0

|Ψn+1〉〈Ψn|,

≡ |0〉〈0| ⊗ ÎP + |1〉〈1| ⊗ ŜP , (2)
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where ÎP and ŜP are the identity operator and the incre-
mental shift operator, respectively, defined in the position
space HP .
Based upon the above, the time-evolution operator T̂

of the unidirectional quantum walker reads

T̂ ≡ B̂ Û , (3)

with

Û ≡ ÛC ⊗ ÎP . (4)

When T̂ is applied reiteratively on the initial state of the
quantum walker, |ψ〉0 ≡ |ψ〉t=0, one recovers the state of
the system at time t, |ψ〉t,

|ψ〉t =
[

T̂
]t

|ψ〉0. (5)

In our case, as the time increases in discrete steps, we
set the time units so that the variable t is a nonnegative
integer quantity, i.e., t ∈ {0} ∪ Z

+.
We assume that the initial position of the quantum

walker is totally defined, and located at the origin:

M̂0|ψ〉0 = |ψ〉0, (6)

where

M̂n ≡ ÎC ⊗ |Ψn〉〈Ψn|, (7)

and ÎC is the identity operator of the coin spaceHC . The
initial coin state is, however, a general superposition of
the two possible qubit values, and thus

|ψ〉0 =
(

cos η|0〉+ eiγ sin η|1〉
)

⊗ |Ψ0〉. (8)

It is well-known [17] that Eqs. (1) and (8) show more
mathematical degrees of freedom than those own by the
physical problem. In particular, we can freely set α = 0,
γ = 0, and restrict θ ∈ [0, π2 ], ϕ ∈ [0, π], and η ∈ [0, π2 ],

without losing any generality. 1 Summing up, we consider
in the sequel that

|ψ〉0 = (cos η|0〉+ sin η|1〉)⊗ |Ψ0〉. (9)

and

ÛC = cos θ|0〉〈0|+ e−iϕ sin θ|0〉〈1|
+ eiϕ sin θ|1〉〈0| − cos θ|1〉〈1|. (10)

With this choice, one can understand θ and ϕ as the
angular spherical coordinates of a unit-length vector in

1 Some of the intermediate expressions shown along this paper may
be ill-defined when either θ = 0 or θ = π

2
. In spite of that, the

final formulas we obtain are still valid in the full range.

a configuration space R
3, ~u, and represent the operator

ÛC in terms of the Pauli operators σj , j ∈ {1, 2, 3},

σ1 ≡ |0〉〈1|+ |1〉〈0|, (11)

σ2 ≡ −i|0〉〈1|+ i|1〉〈0|, (12)

σ3 ≡ |0〉〈0| − |1〉〈1|, (13)

through the scalar projection of the Pauli vector ~σ onto
the ~u direction [22], i.e.,

ÛC = sin θ cosϕσ1 + sin θ sinϕσ2 + cos θ σ3. (14)

Finally, note that we can always translate our results
into the more conventional version of the discrete-time
quantum walk, in which the |0〉 state in the qubit causes
the walker to move leftward. To this end, we have to
extend the position space to include the states in the
negative side, He

P ≡ span{|Ψn〉 : n ∈ Z}, and the bidi-

rectional state |ψe〉t is obtained by applying D̂t to |ψ〉t,

|ψe〉t = D̂t|ψ〉t,

where D̂t is the following time-dependent shift operator
defined in He ≡ HC ⊗He

P ,

D̂t ≡ ÎC ⊗
∞
∑

n=0

|Ψ2n−t〉〈Ψn|. (15)

In practice, this means that for any unidirectional result,
F (n, t), we will have that F (n, t) = F e(2n− t, t).

III. EXACT SOLUTION

Let us now introduce the wave functions ψ0,1(n, t), the
two-dimensional projection of the walker state into the
position basis:

ψ0(n, t) ≡ 〈0| ⊗ 〈Ψn|ψ〉t, (16)

ψ1(n, t) ≡ 〈1| ⊗ 〈Ψn|ψ〉t. (17)

The evolution operator T̂ , Eq. (3), induces the following
set of recursive equations on the wave-function compo-
nents:

ψ0(n, t) = cos θ ψ0(n, t−1)+e−iϕ sin θ ψ1(n, t−1), (18)

and

ψ1(n, t) = eiϕ sin θ ψ0(n− 1, t− 1)− cosθ ψ1(n− 1, t− 1),
(19)

which are to be solved under the assumption that the
walker is initially at n = 0, that is, ψ0(n, 0) = cos η δn,0,
ψ1(n, 0) = sin η δn,0, where δn,t is the Kronecker delta.
In Appendix A we show that one can use a very similar

approach to which was followed in [30] to answer the
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posed problem. Here the solution reads

ψ0(n, t) =
cos η

N

{

1 + (−1)t

2
+

1− (−1)t

2
cos θ

+
N−1
∑

r=1

[

1 +
cos θ cos πr

N

cosω r

N

]

cos
[

φ
(n

t
,
r

N

)

t
]

}

+
e−iϕ sin η sin θ

N

{

1− (−1)t

2

+

N−1
∑

r=1

1

cosω r

N

cos
[

φ
(n

t
,
r

N

)

t+
πr

N

]

}

, (20)

and

ψ1(n, t) =
eiϕ cos η sin θ

N

{

1− (−1)t

2

+

N−1
∑

r=1

1

cosω r

N

cos
[

φ
(n

t
,
r

N

)

t− πr

N

]

}

+
sin η

N

{

1 + (−1)t

2
− 1− (−1)t

2
cos θ

+

N−1
∑

r=1

[

1− cos θ cos πr
N

cosω r

N

]

cos
[

φ
(n

t
,
r

N

)

t
]

}

,

(21)

where n ∈ {0, . . . , t}; the constant N is any natural num-
ber greater than t, e.g., N = t+1; 2 the angular variable
ω r

N
is the only solution that the equation

ω r

N
= arcsin

(

cos θ sin
πr

N

)

(22)

has in the [0, π2 ] range; and lastly

φ
(n

t
,
r

N

)

≡ π

(

2n

t
− 1

)

r

N
+ ω r

N
. (23)

In Fig. 1 we present evidence in support of the sound-
ness of the solution shown in Eqs. (20) and (21). For this
example we have considered the outcome obtained when
the coins

ÛC =

√
3

2
|0〉〈0| ± 1

2
|0〉〈1| ± 1

2
|1〉〈0| −

√
3

2
|1〉〈1|, (24)

act on the following initial state:

|ψ〉0 =

[√
3

2
|0〉+ 1

2
|1〉
]

⊗ |Ψ0〉. (25)

2 In Ref. [30] we discussed the virtues of the alternative choice
N = 2m, with m the smallest integer for which it holds t < 2m.
With this setting one can resort to the fast Fourier transform to
perform all the calculations, thereby greatly reducing the overall
computational time, a point that may be very relevant for large
values of t.

To this end, we have computed |ψ〉t by systematic ap-
plication of the translation operator (3), and evaluated
the probability that the walker is at any given position,
ρ(n, t), the probability mass function (PMF) of the pro-
cess, by means of

ρ(n, t) ≡ 〈ψ|M̂n|ψ〉t. (26)

The results are in excellent agreement with those ob-
tained through the numerical evaluation of

ρ(n, t) ≡ |ψ0(n, t)|2 + |ψ1(n, t)|2 , (27)

for η = π
6 , θ = π

6 , and ϕ = 0, Fig. 1 (a), or with ϕ = π,
Fig. 1 (b).
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Figure 1. (Color online) Probability mass function of the
process for t = 30 time steps. The red solid line connects the
points obtained by direct application of the evolution oper-
ator on the initial state whereas the blue circles were com-
puted employing Eq. (27) when: (a) we pick the plus signs in
Eq. (24); (b) we choose the minus signs in Eq. (24).
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IV. GENERAL PROPERTIES

A. Recursion

The structure of Eqs. (20) and (21) shows how ψ0(n, t)
and ψ1(n, t) can be seen as the superposition of the (cou-
pled) evolution of the two initial components of the wave
function, ψ0(0, 0) = cos η, ψ1(0, 0) = sin η. Another pic-
ture is also possible, in which formally the evolution of
each component depends only on their own initial val-
ues. The price to be paid is the inclusion of the nonzero
components of the wave function at time t = 1,

ψ0(0, 1) = cos η cos θ + e−iϕ sin η sin θ,

ψ1(1, 1) = eiϕ cos η sin θ − sin η cos θ,

since ψ0(1, 1) = ψ1(0, 1) = 0. In terms of ψ0(0, 0),
ψ1(0, 0), and the above quantities one has 3

ψ0(n, t) = ψ0(0, 0)Λ(n, t) + ψ0(0, 1)Λ(n+ 1, t+ 1), (28)

and

ψ1(n, t) = ψ1(0, 0)Λ(n, t) + ψ1(1, 1)Λ(n, t+ 1), (29)

where

Λ(n, t) ≡ 1

N

{

1 + (−1)t

2

+

N−1
∑

r=1

1

cosω r

N

cos
[

φ
(n

t
,
r

N

)

t− ω r

N

]

}

.

(30)

The two equations that correlate the evolution of the
wave functions, cf. Eqs. (18) and (19), turn now into a
single, two-step recursive formula that governs the whole
dynamics: 4

Λ(n, t+ 2) = cos θ [Λ(n, t+ 1)− Λ(n− 1, t+ 1)]

+ Λ(n− 1, t). (31)

Expression (30) is recovered from Eq. (31) once one con-
siders the following initial conditions Λ(0, 0) = 1, and
Λ(0, 1) = Λ(1, 1) = 0, together with the boundary condi-
tions Λ(−1, t) = Λ(t + 1, t) = 0, for t ≥ 0. In fact, these
conditions lead to Λ(0, t) = Λ(t, t) = 0, for t ≥ 1 as well.

3 We show below how |ψ1(1, 1)|2 can be understood as the (right-
ward) “initial velocity” of our walker. In a bidirectional scheme,
|ψ0(0, 1)|2 would play the role of the leftward “initial velocity”.

4 This idea of expressing the evolution of the walker in terms of a
unique magnitude which follows a recursive equation is not new,
e.g., in Ref. [3] we find one of such recursion formulas which in-
volves non-constant coefficients. Especially relevant is, in this
sense, Ref. [23] where it is derived the bidirectional equivalent of
Eq. (31) on the basis of the properties of the Chebyshev polyno-
mials of the second kind.

B. Symmetry

Function Λ(n, t) is very useful for the analysis of space
symmetries around the middle of the wave packet [21, 22].
It is easy to check from Eq. (30) that one has

Λ(k − l, 2k) = Λ(k + l, 2k),

Λ(k − l, 2k + 1) = −Λ(k + l + 1, 2k + 1),

for any l ∈ {0, . . . , k}, k ≥ 0. In other words, Λ(n, t) is
symmetric around the point t

2 ,

Λ

(⌊

t

2

⌋

− l, t

)

= (−1)tΛ

(⌈

t

2

⌉

+ l, t

)

, (32)

where we have introduced the floor function, ⌊·⌋, and the
ceiling function, ⌈·⌉. Accordingly, Λ(n, t+1) is symmetric
around the point t+1

2 , while Λ(n+ 1, t+ 1) is symmetric

around t−1
2 . One can be remove this disparity in the

center of the symmetry with the help of the two auxiliary
functions Λ±(n, t),

Λ±(n, t) ≡
1

2
[Λ(n+ 1, t+ 1)± Λ(n, t+ 1)] , (33)

since it can be shown that

Λ+

(⌊

t

2

⌋

− l, t

)

= (−1)t+1Λ+

(⌈

t

2

⌉

+ l, t

)

, (34)

and

Λ−

(⌊

t

2

⌋

− l, t

)

= (−1)tΛ−

(⌈

t

2

⌉

+ l, t

)

. (35)

In terms of these three quantities Λ(n, t) and Λ±(n, t)
the PMF reads

ρ(n, t) = Λ2(n, t) + Λ2
+(n, t) + Λ2

−(n, t)

+ 2 cos θΛ(n, t)Λ−(n, t)

+ 2 [cos 2η cos 2θ + sin 2η sin 2θ cosϕ] Λ+(n, t)Λ−(n, t)

+ 2 [cos 2η cos θ + sin 2η sin θ cosϕ] Λ(n, t)Λ+(n, t).

(36)

The first three terms in the right hand side of Eq. (36)
are even functions around the midpoint. The same holds
for the product Λ(n, t)Λ−(n, t), see Eqs. (32) and (35).
Conversely, Λ(n, t)Λ+(n, t) and Λ+(n, t)Λ−(n, t) are odd
functions. Therefore, in order to get a symmetric PMF
one has to demand that

cos 2η cos 2θ + sin 2η sin 2θ cosϕ = 0, (37)

as well as

cos 2η cos θ + sin 2η sin θ cosϕ = 0. (38)

The solutions of Eqs. (37) and (38) can be classified in
three different (although intersecting) families:
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The first one corresponds to η = π
4 and θ = 0. When

θ = 0, the coin operator does not entangle the evolution
of the wave functions, and thus one has

ψ0(0, 1) = ψ0(0, 0) = cos η,

ψ1(1, 1) = −ψ1(0, 0) = − sin η,

and

Λ(n, t) = (−1)n−1,

for 1 ≤ n ≤ t− 1. As a consequence

ψ0(n, t) = cos η δn,0,

ψ1(n, t) = (−1)t sin η δn,t,

the probability is concentrated symmetrically at the end-
points, if both wave functions have the same weight at
the beginning.
The second family of solutions, η = π

4 and ϕ = π
2 , is

based on the odd symmetry that the coin operator shows
under the interchange |0〉 ↔ |1〉 when ϕ = π

2 . If the
initial state is invariant under the same transformation,
the PMF will be symmetric [6].
The third one, related to η = π

4 and θ = π
2 , is patho-

logical to some extend. Condition θ = π
2 causes that

Λ(n, t) = δ2n,t, and therefore Λ(n, t)Λ±(n, t) = 0 identi-
cally. In fact,

ρ(n, t) = δ2n,t + sin2 η δ2n,t−1 + cos2 η δ2n,t+1,

and the walker remains confined in the smallest interval
containing t

2 , i.e., ρ(n, t) = 0 for n 6∈ { t−1
2 , t

2 ,
t+1
2 }. The

symmetry is exact only for η = π
4 , whereas if cos 2η = ±1,

the walker’s position alternates between n = t
2 , when t

is even, and n = t±1
2 , when t is odd. Eventually, the

value of ϕ is found to be irrelevant in this case, a fact
that cannot be foreseen from Eqs. (37) and (38).
There are no further symmetries around the central

point, which is not inconsistent with the fact that the
same sets of solutions for the parameters θ, ϕ and η can
be obtained by requiring that alternative constraints are
met [5]. For instance, one may demand either equity in
the “initial conditions” of the wave functions,

|ψ0(0, 0)|2 = |ψ1(0, 0)|2 , (39)

|ψ0(0, 1)|2 = |ψ1(1, 1)|2 , (40)

which links with the vision of the quantum walker as a
ballistic process [22], or the use of an always-fair coin,

〈ψ|Û |ψ〉t = 0, ∀t, (41)

which clearly connects with the game-theory interpreta-
tion of the quantum walker [14–16].

C. Probability current

Another relevant magnitude whose description is sim-
pler within the present formulation is the probability cur-
rent J(n, t) [31]. Like the motion of the walker itself, the

probability flux is directional and enters into the next site
through the |1〉 component exclusively. Therefore, it can
be evaluated through the following compact expression:

J(n, t) ≡ |ψ1(n+ 1, t+ 1)|2 , (42)

for n ∈ {0, . . . , t}. Alternatively, we can also express
J(n, t) in terms of the local values of the wave function,
cf. Eq. (19),

J(n, t) ≡
∣

∣eiϕ sin θ ψ0(n, t)− cos θ ψ1(n, t)
∣

∣

2
. (43)

We can verify the validity of this identity by obtaining
the continuity equation for the probability mass function
ρ(n, t). Consider ∆tρ(n, t),

∆tρ(n, t) ≡ ρ(n, t+ 1)− ρ(n, t)

= |ψ0(n, t+ 1)|2 + |ψ1(n, t+ 1)|2

− |ψ0(n, t)|2 − |ψ1(n, t)|2 ,

and see how

|ψ1(n+ 1, t+ 1)|2 =
∣

∣eiϕ sin θ ψ0(n, t)− cos θ ψ1(n, t)
∣

∣

2

= |ψ0(n, t)|2 + |ψ1(n, t)|2

−
∣

∣cos θ ψ0(n, t) + e−iϕ sin θ ψ1(n, t)
∣

∣

2

= |ψ0(n, t)|2 + |ψ1(n, t)|2

− |ψ0(n, t+ 1)|2 ,

where we have first used Eq. (19) and finally Eq. (18).
Therefore we have

∆tρ(n, t) = |ψ1(n, t+ 1)|2 − |ψ1(n+ 1, t+ 1)|2

= J(n− 1, t)− J(n, t), (44)

that is, the change in the probability of the walker to be
found in a given location n comes from the the balance
between the outgoing probability, J(n, t), which goes to
the n + 1 site, and the ingoing probability J(n − 1, t),
which comes from the n− 1 site.
Finally, note how Eq. (44) gives us the possibility of

deriving the equivalent of the Ehrenfest’s theorem for the
time evolution of the expectation value of the position,
〈X〉t,

〈X〉t ≡
t
∑

n=0

nρ(n, t). (45)

In our case we have

∆t〈X〉t ≡ 〈X〉t+1 − 〈X〉t

=

t+1
∑

n=1

nJ(n− 1, t)−
t
∑

n=0

nJ(n, t)

=

t
∑

n=0

J(n, t) =

t+1
∑

n=0

|ψ1(n, t+ 1)|2 . (46)
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V. ASYMPTOTIC EVOLUTION

Despite their accuracy, most of the previous formulas
are too intricate to draw further conclusions from them.
The usual approach to overcome this circumstance is to
consider the asymptotic limit [28, 30], the limit in which
t ≫ 1, n ≫ 1, but that keeps ν ≡ n/t finite. In Ap-
pendix B we show how, under the previous assumptions,
ρ(n, t) can be approximated in the domain [5, 27]

1

2
(1− cos θ) ≤ ν ≤ 1

2
(1 + cos θ) , (47)

by ρ̄(n, t),

ρ̄(n, t) ≡ 1

2πt

1

ν(1− ν)

sin θ
√

cos2 θ − (2ν − 1)2

×
{

1− (2ν − 1) (cos 2η + sin 2η tan θ cosϕ)

+ |R(ν)| sin
[

2φ0(ν)t +Ω(ν)

]

}

, (48)

where

φ0(ν) ≡ (2ν − 1) arcsin

(
√

cos2 θ − (2ν − 1)2

4ν(1− ν) cos2 θ

)

+ arcsin

(
√

cos2 θ − (2ν − 1)2

4ν(1− ν)

)

, (49)

R(ν) ≡ (2ν − 1)

[

∣

∣

∣

∣

2ν − 1

cos2 θ
− cos 2η − sin 2η tan θ cosϕ

∣

∣

∣

∣

2

+

∣

∣

∣

∣

1− (2ν − 1)2

cos2 θ

∣

∣

∣

∣

∣

∣

∣

∣

cos 2η tan θ − sin 2η cosϕ

∣

∣

∣

∣

2
]

1
2

,

(50)

and

tanΩ(ν) ≡

√

1− (2ν−1)2

cos2 θ

[

cos 2η tan θ − sin 2η cosϕ

]

2ν−1
cos2 θ − cos 2η − sin 2η tan θ cosϕ

.

(51)

Before analyzing in detail the mathematical structure
and the main properties of Eq. (48), which will be the
subject of forthcoming sections, let us devote some words
to the basic nature of ρ̄(n, t). It is clear from Eqs. (48)
to (51) that ρ̄(n, t) is a function that depends intrinsically
on ν and t. We have avoided to adopt a notation that
exploits this fact because it could induce to the erroneous
impression that ρ̄(n, t) is a (perhaps approximate) prob-
ability density function with respect to ν, when the true
is that it estimates ρ(n, t), a probability mass function
on n. Therefore, for the moment, consider ν as a mere
shorthand for n/t. We will return to this issue later on.

A. Bounds

The first point to note is the presence of a single sinu-
soidal term in Eq. (48). This means that we can define
ρ̄sup(n, t),

ρ̄sup(n, t) ≡
1

2πt

1

ν(1 − ν)

sin θ
√

cos2 θ − (2ν − 1)2

[

1 + |R(ν)|

− (2ν − 1) (cos 2η + sin 2η tan θ cosϕ)
]

, (52)

and ρ̄inf(n, t),

ρ̄inf(n, t) ≡
1

2πt

1

ν(1 − ν)

sin θ
√

cos2 θ − (2ν − 1)2

[

1− |R(ν)|

− (2ν − 1) (cos 2η + sin 2η tan θ cosϕ)
]

, (53)

in such a way that ρ̄inf(n, t) ≤ ρ̄(n, t) ≤ ρ̄sup(n, t). This
does not imply that ρ̄inf(n, t) ≤ ρ(n, t) ≤ ρ̄sup(n, t), but
as Fig. 2 shows, these two functions are very good proxies
for estimating the bounds of ρ(n, t) [27].
In Fig. 2 we have considered the same two particular

examples we introduced in Fig. 1, e.g., η = π
6 , θ = π

6 ,
and either ϕ = 0 or ϕ = π. In both cases the upper and
lower lines coincide in the middle of the plot. This is a
general property since

lim
n→ t

2

ρ̄inf(n, t) = lim
n→ t

2

ρ̄sup(n, t) =
2

πt
tan θ. (54)

Another outstanding feature is that we can recover the
same overall picture in Fig. 2 if we replace ρ̄sup(n, t) and
ρ̄inf(n, t) by two smooth functions that intersect each
other at ν = 1

2 . These two functions are obtained by
exchanging |R(ν)| for R(ν) in Eqs. (52) and (53).
Finally, for the particular case shown in the bottom

panel of Fig. 2, it is clear that both ρ̄sup(n, t) and
ρ̄inf(n, t) exhibit a symmetric behavior around the mid-
dle point, although this example does not belong to any
of the three families of solutions of Eqs. (37) and (38)
discussed above.

B. Approximate symmetry

The symmetry of the bounding functions ρ̄sup(n, t) and
ρ̄inf(n, t) around ν = 1

2 reported in the previous section
can be obtained by demanding that

cot 2η = − tan θ cosϕ, (55)

since then

ρ̄ sup

inf
(n, t) =

1

2πt

sin θ

ν(1 − ν)

1± |R(ν)|
√

cos2 θ − (2ν − 1)2
, (56)

with

R(ν) = (2ν − 1)

[

∣

∣

∣

∣

2ν − 1

cos2 θ

∣

∣

∣

∣

2

+ 4

∣

∣

∣

∣

1− (2ν − 1)2

cos2 θ

∣

∣

∣

∣

cos2 2η cot2 2θ

]
1
2

. (57)
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Figure 2. (Color online) Probability mass function of the
process for t = 30 time steps. The blue circles were obtained
by direct evaluation of the exact solution. The upper and
lower black dashed lines correspond to ρ̄sup(n, t) and ρ̄inf(n, t)
respectively. The parameters were η = π

6
, θ = π

6
, and ϕ = 0

in the top panel, or ϕ = π in the bottom panel.

Equation (55) coincides with Eq. (38), recall that θ = π
2 is

a singular case, demonstrating in this way that Eqs. (37)
and (38) had different level of significance.
Several interpretations can be given to condition (55).

Thus, in Ref. [22] we find a discussion about the par-
ity properties of the quasi-momentum components of the
quantum walk which ultimately would lead to Eq. (55).
Another approach is the following: if one assumes that
Eq. (38) holds, ρ(n, t) reduces to

ρ(n, t) = Λ(n, t)Λ(n+ 1, t+ 2) + Λ2
+(n, t) + Λ2

−(n, t)

− 2 cos 2ηΛ+(n, t)Λ−(n, t), (58)

where uniquely the last term does not show even sym-
metry around the central point. But Λ+(n, t)Λ−(n, t) is
a second-order correction since one has

Λ+(n, t)Λ−(n, t) =
1

4

[

Λ2(n+ 1, t+ 1)− Λ2(n, t+ 1)
]

.

Additional readings are: the approximate symmetry ap-
pears when one replaces Eqs. (39) and (40) with

|ψ0(0, 0)|2 + |ψ0(0, 1)|2 = |ψ1(0, 0)|2 + |ψ1(1, 1)|2 , (59)

or when one relaxes the fair-coin condition (41) and only
asks to be fulfilled by the initial state,

〈ψ|Û |ψ〉t=0 = 0. (60)

Note that Eq. (55) has one, and only one, solution
for η, given θ and ϕ, because the function cot 2η is un-
bounded, monotonically decreasing, and continuous for
η ∈ [0, π2 ]. Thus, for instance, when θ = π

4 and ϕ = π
one finds that η = π

8 , a setup discussed in Ref. [28]. For
θ = π

6 and ϕ = π, one has η = π
6 , which is the case we

use as an illustrative example in the bottom panels in
Figs. 1 and 2. These plots clearly show that the symme-
try is only approximate, but it becomes more and more
accurate as one increases t: see Fig. 3 (b) below.

C. Stationary density

The apparent symmetry discussed in the previous sec-
tion is also present in ρ̄med(n, t),

ρ̄med(n, t) ≡
ρ̄sup(n, t) + ρ̄inf(n, t)

2
, (61)

inherited from ρ̄sup(n, t) and ρ̄inf(n, t). The new function
can be also retrieved from Eq. (48) once one removes the
sinusoidal term [5]:

ρ̄med(n, t) =
1

2πt

1

ν(1− ν)

sin θ
√

cos2 θ − (2ν − 1)2

×
[

1− (2ν − 1) (cos 2η + sin 2η tan θ cosϕ)
]

.

(62)

The appealing of ρ̄med(n, t) is twofold. On the one hand,
it gives a smooth estimate of ρ(n, t), see Fig. 3, much
more concise than ρ̄(n, t). On the other hand, it serves
as a starting point for the derivation of a stationary prob-
ability density function to which the exact PMF should
converge as t increases [25].
To this end, let us define the continuous variable ε,

ε ∈ (−1,+1),

ε ≡ 2ν − 1

cos θ
, (63)

which relates back to n through the expression

n =
t

2
(1 + ε cos θ) .

Therefore, for t large enough we have

∆n ∼ t

2
cos θ dε,
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Figure 3. (Color online) Probability mass function of the
process for t = 100 time steps. The blue circles were obtained
through the evaluation of the exact expression for η = π

6
,

θ = π

6
, and (a) ϕ = 0; (b) ϕ = π. The black dashed line

corresponds to ρ̄med(n, t).

and since we want

ρ̄med(n, t)∆n ∼ ̺(ε)dε,

we obtain ̺(ε),

̺(ε) ≡ sin θ

π

1

1− ε2 cos2 θ

1√
1− ε2

×
[

1− ε (cos 2η cos θ + sin 2η sin θ cosϕ)
]

.

(64)

The function thus defined is a probability density func-
tion because one has that sin θ ≥ 0,

|cos 2η cos θ + sin 2η sin θ cosϕ| ≤ 1,

and
∫ 1

−1

̺(ε)dε = 1.

VI. CONCLUSION

In this paper we have analyzed the evolution of a
discrete-time quantum walk on a line when the coin oper-
ator shows the biggest generality from a physical point of
view. In our approach the walker can either stand still in
the place or proceed in a fixed direction but never move
backward. This formalism is equivalent to the one used
most, where the particle can travel in either direction,
and therefore every formula or property can be easily
translated from one setup to the other.
Our main outcome is the derivation of closed-form ex-

pressions for the wave function that governs the proba-
bility of finding the particle at any given location, the
probability mass function or PMF.
These explicit results are the starting point for the

analysis of some exact properties of the process, as its
recursive nature or its achievable space symmetry, but
also serve for the study of the asymptotic behavior of the
quantum walker.
In particular, we obtain two functions which estimate

the upper and lower bounds of this PMF. These func-
tions reveal the presence of an approximate symmetry in
the process, a symmetry that is not shared by the exact
solution. We also recover the general formula for the sta-
tionary probability density of the relative position of the
walker, a law to which the process tends in the asymp-
totic limit.
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Appendix A: Exact solution

In this appendix we provide explicit details on the
derivation of the closed-form expressions for the two com-
ponents of the wave function given in the main text,
Eqs. (20) and (21), starting from the recursive formu-
las (18) and (19). The approach that follows is similar to
the one taken in our previous work [30], and differs from
the broadest method in the use of the discrete Fourier
transform (DFT) instead of the discrete-time Fourier
transform [7].
Let f(n) be a given set of N complex numbers,

n ∈ {0, . . . , N − 1}, and denote its DFT by f̃(r),

f̃(r) ≡
N−1
∑

n=0

f(n)ei2πrn/N , (A1)

for r ∈ {0, . . . , N − 1}. The N complex quantities f̃(r)
thus defined keep exactly the same information contained
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in the original series, and therefore one can recover f(n)

from f̃(r) by means of the so-called inverse DFT formula

f(n) ≡ 1

N

N−1
∑

r=0

f̃(r)e−i2πrn/N . (A2)

The DFT is well suited to convert recursive relationships
in the position domain, as Eqs. (18) and (19), into a
set of algebraic equations in the Fourier domain. In our
case, however, the recursive formulas involve not only
different locations but different instants of time, so we
must carefully choose f(n) and N itself to preserve the
overall coherence.
To this end, let us introduce the auxiliary time hori-

zon T , T ≥ 0, set N ≡ T + 1, and consider the follow-
ing definition for the DFT of ψ0,1(n, t), valid for any t,
t ∈ {0, . . . , T }, 5

ψ̃0,1(r, t;T ) ≡
N−1
∑

n=0

ψ0,1(n, t)e
i2πrn/N , (A3)

where it is implicitly assumed that ψ0,1(n, t) = 0 for any

n ≥ t + 1. This definition entails that ψ̃0,1(r, t;T ) is an
explicit function of T : that is, for a fixed value of r and

a fixed value of t, different choices of T lead to differ-
ent values for ψ̃0,1(r, t;T ). Nonetheless, the final result
that one gets after applying the corresponding inversion
formula,

ψ0,1(n, t) ≡
1

N

N−1
∑

r=0

ψ̃0,1(r, t;T )e
−i2πrn/N , (A4)

does not depend on T for a fixed choice of n and t, as
long as 0 ≤ n ≤ t ≤ N − 1. 6 Therefore, the conclusion
is that Eq. (A4) will be valid for any N , N ≥ t+ 1.

At this point we can safely move Eqs. (18) and (19)
into the Fourier domain:

ψ̃0(r, t;T ) = cos θ ψ̃0(r, t− 1;T )

+ e−iϕ sin θ ψ̃1(r, t− 1;T ), (A5)

ψ̃1(r, t;T ) = eiϕ sin θ ei2πr/N ψ̃0(r, t− 1;T )

− cos θ ei2πr/N ψ̃1(r, t− 1;T ). (A6)

The initial values for ψ̃0,1(r, t;T ) are ψ̃0(r, 0;T ) = cos η,

ψ̃1(r, 0;T ) = sin η, for r ∈ {0, . . . , N −1}. The resolution
of Eqs. (A5) and (A6) can be tackled through standard
matrix techniques, thus resulting in

ψ̃0(r, t;T ) =
e−iπ r

N

2 cosω r

N

{

(λ+)
t
[

(cos θ − λ−) cos η + e−iϕ sin θ sin η
]

− (λ−)
t
[

(cos θ − λ+) cos η + e−iϕ sin θ sin η
]}

,

(A7)

and

ψ̃1(r, t;T ) =
(λ+ − cos θ) (cos θ − λ−) e

−iπ r

N

2 cosω r

N

{

(λ+)
t

[

cos η eiϕ

sin θ
+

sin η

cos θ − λ−

]

− (λ−)
t

[

cos η eiϕ

sin θ
− sin η

λ+ − cos θ

]}

,

(A8)

with λ± functions of r/N ,

λ+ ≡ e
−i(ω r

N
−π r

N
)
, (A9)

λ− ≡ −ei(ω r

N
+π r

N
)
, (A10)

and where ω r

N
is an angle that, given r and N , satisfies

sinω r

N
= cos θ sin

πr

N
. (A11)

Note that, since r ∈ {0 . . . , N − 1}, we have

0 ≤ sinω r

N
≤ cos θ ≤ 1,

5 For notational convenience, N and T may alternate or even co-
exist in expressions in this appendix.

6 In fact, Eq. (A4) is valid also in the range n ∈ {t+1, . . . , N−1}.
However, if one evaluates Eq. (A4) for any of these values, one
will obtain ψ0,1(n, t) = 0 identically.

so, to prevent any uncertainty, we consider that ω r

N
is

the only solution that Eq. (A11) has in [0, π2 ].

Now, we can simply introduce the value of ψ̃0,1(r, t;T )
given in (A7) and (A8) into Eq. (A4) and recover
ψ0,1(n, t) after the computation of a finite sum. Note
that, at this point, our procedure has yielded a closed-
form expression for the wave function, thus we could sim-
ply stop here. However, we are going to simplify the final
formulas as much as possible: in this way we can get a
more detailed view of the properties of the solution.
To manage the complexity of this endeavor we analyze

the particular case η = 0 first. Let us begin with ψ0(n, t):

ψ0(n, t) =
1

N

N−1
∑

r=0

e−iπ(2n+1) r

N

2 cosω r

N

{

(λ+)
t (cos θ − λ−)

− (λ−)
t (cos θ − λ+)

}

. (A12)

If we use Eq. (A11) in conjunction with the definition of
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λ±, Eqs. (A9) and (A10), we can show that

e−iπr/N (cos θ − λ±) = cos θ cos
πr

N
∓ cosω r

N
(A13)

holds, and that consequently

ψ0(n, t) =
1

2N

[

(cos θ + 1)− (−1)t (cos θ − 1)
]

+
1

2N

N−1
∑

r=1

cos θ cos πr
N

cosω r

N

e
−i

[

π(2n−t) r

N
+ω r

N
t
]

+
1

2N

N−1
∑

r=1

e
−i

[

π(2n−t) r

N
+ω r

N
t
]

− (−1)t

2N

N−1
∑

r=1

cos θ cos πr
N

cosω r

N

e
−i

[

π(2n−t) r

N
−ω r

N
t
]

+
(−1)t

2N

N−1
∑

r=1

e
−i

[

π(2n−t) r

N
−ω r

N
t
]

. (A14)

Here we have isolated in the first term all the contribution
coming from the r = 0 case. This step is necessary to
rearrange the two last summations by introducing a new
variable s, s ≡ N − r,

ψ0(n, t) =
1

2N

[

(cos θ + 1)− (−1)t (cos θ − 1)
]

+
1

2N

N−1
∑

r=1

cos θ cos πr
N

cosω r

N

e
−i

[

π(2n−t) r

N
+ω r

N
t
]

+
1

2N

N−1
∑

r=1

e
−i

[

π(2n−t) r

N
+ω r

N

t
]

+
1

2N

N−1
∑

s=1

cos θ cos πs
N

cosω s

N

e
i
[

π(2n−t) s

N
+ω s

N
t
]

+
1

2N

N−1
∑

s=1

e
i
[

π(2n−t) s

N
+ω s

N
t
]

, (A15)

where the following identities

ω r

N
= ω s

N
,

cos
πr

N
= − cos

πs

N
,

have been taken into account. Finally we find

ψ0(n, t) =
1

2N

[

(cos θ + 1)− (−1)t (cos θ − 1)
]

+
1

N

N−1
∑

r=1

[

1 +
cos θ cos πr

N

cosω r

N

]

× cos

[

π(2n− t)
r

N
+ ω r

N
t

]

. (A16)

In the case of ψ1(n, t) we can proceed in a similar way.

The result

ψ1(n, t) =
eiϕ sin θ

N

{

1− (−1)t

2

+

N−1
∑

r=1

1

cosω r

N

cos

[

π(2n− t− 1)
r

N
+ ω r

N
t

]

}

,

(A17)

is almost immediate once one realizes that

(λ+ − cos θ) (cos θ − λ−) e
−iπr/N = sin2 θ eiπr/N ,

an expression that combines Eqs. (A11) and (A13).
Analogously, when η = π

2 we obtain

ψ0(n, t) =
e−iϕ sin θ

N

{

1− (−1)t

2

+

N−1
∑

r=1

1

cosω r

N

cos

[

π(2n− t+ 1)
r

N
+ ω r

N
t

]

}

,

(A18)

and

ψ1(n, t) =
1

2N

[

(1− cos θ) + (−1)t (1 + cos θ)
]

+
1

N

N−1
∑

r=1

[

1− cos θ cos πr
N

cosω r

N

]

× cos

[

π(2n− t)
r

N
+ ω r

N
t

]

, (A19)

by simply applying the same ideas and intermediate for-
mulas.
Finally, we can recover the general solution, Eqs. (20)

and (21), through the superposition of these two cases.

Appendix B: Asymptotic expressions

In this appendix we obtain asymptotic expressions for
ψ0,1(n, t) and ρ(n, t), formulas with a restricted validity
but which in turn are more compact and readable than
the exact ones.
We begin with a close analysis of the inner structure

of the different pieces that compose Eqs. (20) and (21).
The conclusion is that, in essence, we must find a way to
approximate functions like h(n, t),

h(n, t) ≡ Ξ(t)

N

+
1

N

N−1
∑

r=1

g(r/N) cos [Φ(n, r, t;T ) + ǫπr/N ] ,

(B1)

where

Φ(n, r, t;T ) ≡ π(2n− t)r/N + ω r

N
t, (B2)
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and ǫ ∈ {−1, 0, 1}. In every case g(·) is a smooth func-
tion, and therefore, the behavior of the cosine terms does
determine the overall result of the sum. Due to the pres-
ence of ω r

N
within Φ(n, r, t;T ), the argument of these

cosine functions does not change linearly with r but ex-
hibits a maximum, and then the use an adapted version
of the method of the stationary phase is the one most in-
dicated in this case [30, 32]: Only those terms for which
Φ(n, r, t;T ) attains its maximum are relevant, whereas
the rest of them are negligible.
To this end, let us first define u ≡ r/N , and ν ≡ n/t,

in terms of which we can rewrite Φ(n, r, t;T ),

Φ(νt, u(T − 1), t;T ) = φ(ν, u)t, (B3)

with

φ(ν, u) ≡ π(2ν − 1)u+ ωu. (B4)

Our next step is to consider the function h(n, t) in the
continuum limit, N → ∞,

h(n, t) ∼
∫ 1

0

g(u) cos [φ(ν, u)t+ ǫπu] du

∼ Re

{
∫ 1

0

g(u)eiǫπueiφ(ν,u)tdu

}

, (B5)

and to expand φ(ν, u) in the vicinity of u0,

φ(ν, u) ∼ φ(ν, u0) +
1

2

∂2φ(ν, u0)

∂u2
(u− u0)

2

= φ0(ν) +
1

2
φ′′0(ν)(u − u0)

2,

where u0 is the point for which, given ν, φ(ν, u) has its
maximum:

∂φ(ν, u0)

∂u
= π(2ν − 1) +

π cos θ cosπu0
√

1− cos2 θ sin2 πu0
= 0.

(B6)

From Eq. (B6) we have

cosπu0 =
1− 2ν

2
√

ν(1− ν)
tan θ, (B7)

and

sinπu0 =
1

2 cos θ

√

cos2 θ − (2ν − 1)2

ν(1− ν)
. (B8)

Equation (B8) shows us that the validity of the present
approximation is restricted to values of ν for which one
has cos2 θ − (2ν − 1)2 ≥ 0; that is,

1

2
(1− cos θ) ≤ ν ≤ 1

2
(1 + cos θ) ,

since, by construction, cos θ ≥ 0. Also from Eqs. (22)
and (B8) we get

sinω0 ≡ sinωu0
=

1

2

√

cos2 θ − (2ν − 1)2

2ν(1− ν)
, (B9)

cosω0 ≡ cosωu0
=

sin θ

2
√

ν(1 − ν)
, (B10)

expressions that will be helpful in forthcoming deriva-
tions.
Now we can fully evaluate Eq. (B5) under the above

premises:

h(n, t) ∼ Re

{
∫ 1

0

g(u)eiǫπueiφ(ν,u)tdu

}

∼ Re

{
∫ 1

0

g(u0)e
iǫπu0eit[φ0(ν)+

1
2
φ′′

0 (ν)(u−u0)
2]du

}

∼ Re

{

g(u0)e
i[ǫπu0+φ0(ν)t]

∫ ∞

−∞

e
it

2
φ′′

0 (ν)(u−u0)
2

du

}

=

√

2π

t|φ′′0 (ν)|
g(u0) cos

[

φ0(ν)t−
π

4
+ ǫπu0

]

,

(B11)

with

φ′′0(ν) = −4π2ν(1− ν)

√

cos2 θ − (2ν − 1)2

sin θ
. (B12)

The approximate versions of Eqs. (20) and (21) are

ψ0(n, t) ∼
cos η√
t

√

2(1− ν) sin θ

πν
√

cos2 θ − (2ν − 1)2

× cos
[

φ0(ν)t−
π

4

]

+
e−iϕ sin η√

t

√

2 sin θ

π
√

cos2 θ − (2ν − 1)2

× cos
[

φ0(ν)t−
π

4
+ πu0

]

, (B13)

and

ψ1(n, t) ∼
eiϕ cos η√

t

√

2 sin θ

π
√

cos2 θ − (2ν − 1)2

× cos
[

φ0(ν)t−
π

4
− πu0

]

+
sin η√
t

√

2ν sin θ

π(1− ν)
√

cos2 θ − (2ν − 1)2

× cos
[

φ0(ν)t−
π

4

]

, (B14)

and they follow from Eq. (B11) once one realizes, cf.
Eqs. (B7) and (B10), that if

g(u) = 1 +
cos θ cosπu

cosωu
,

one gets

g(u0) = 2(1− ν);

if

g(u) =
sin θ

cosωu
,
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one has

g(u0) = 2
√

ν(1 − ν);

and finally if

g(u) = 1− cos θ cosπu

cosωu
,

one obtains

g(u0) = 2ν.

To derive the asymptotic expression for ρ(n, t) one has

to calculate |ψ0,1(n, t)|2 first:

|ψ0(n, t)|2 ∼ 1

t

2 sin θ

πν
√

cos2 θ − (2ν − 1)2

{

(1− ν) cos2 η cos2
[

φ0(ν)t−
π

4

]

+ ν sin2 η cos2
[

φ0(ν)t−
π

4
+ πu0

]

+
√

ν(1 − ν) sin 2η cosϕ cos
[

φ0(ν)t−
π

4

]

cos
[

φ0(ν)t −
π

4
+ πu0

]

}

, (B15)

|ψ1(n, t)|2 ∼ 1

t

2 sin θ

π(1− ν)
√

cos2 θ − (2ν − 1)2

{

(1 − ν) cos2 η cos2
[

φ0(ν)t−
π

4
− πu0

]

+ ν sin2 η cos2
[

φ0(ν)t−
π

4

]

+
√

ν(1 − ν) sin 2η cosϕ cos
[

φ0(ν)t−
π

4

]

cos
[

φ0(ν)t −
π

4
− πu0

]

}

, (B16)

then use the following trigonometric identities,

2cos2
[

φ0(ν)t−
π

4

]

= 1 + sin [2φ0(ν)t] ,

2cos
[

φ0(ν)t−
π

4

]

cos
[

φ0(ν)t −
π

4
± πu0

]

= cosπu0 + cosπu0 sin [2φ0(ν)t]± sinπu0 cos [2φ0(ν)t] ,

2cos2
[

φ0(ν)t−
π

4
± πu0

]

= 1 + cos 2πu0 sin [2φ0(ν)t] ± sin 2πu0 cos [2φ0(ν)t] ,

in coordination with Eqs. (B7) to (B10), to ultimately obtain

ρ(n, t) ∼ 1

2πt

1

ν(1 − ν)

sin θ
√

cos2 θ − (2ν − 1)2

{

1− (2ν − 1) (cos 2η + sin 2η tan θ cosϕ)

+ (2ν − 1)

[

2ν − 1

cos2 θ
− cos 2η − sin 2η tan θ cosϕ

]

sin [2φ0(ν)t]

+ (2ν − 1)

√

1− (2ν − 1)2

cos2 θ

[

cos 2η tan θ − sin 2η cosϕ

]

cos [2φ0(ν)t]

}

≡ ρ̄(n, t). (B17)

This expression leads to Eq. (48) after a straightforward trigonometric transformation.
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