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Shor’s factoring algorithm (SFA) finds the prime factors of a number, N = p1p2, exponentially
faster than the best known classical algorithm. Responsible for the speed-up is a subroutine called
the quantum order finding algorithm (QOFA) which calculates the order – the smallest integer,
r, satisfying ar mod N = 1, where a is a randomly chosen integer coprime to N (meaning their
greatest common divisor is one, gcd(a,N) = 1). Given r, and with probability not less than 1/2,

the factors are given by p1 = gcd(a
r
2 − 1, N) and p2 = gcd(a

r
2 + 1, N). For odd r it is assumed

the factors cannot be found (since a
r
2 is not generally integer) and the QOFA is relaunched with a

different value of a. But a recent paper [E. Martin-Lopez et al.: Nat Photon 6, 773 (2012)] noted
that the factors can sometimes be found from odd orders if the coprime is square.

This raises the question of improving SFA’s success probability by considering odd orders. We
show that an improvement is possible, though it is small. We present two techniques for retrieving
the order from apparently useless runs of the QOFA: not discarding odd orders; and looking out
for new order finding relations in the case of failure. In terms of efficiency, using our techniques is
equivalent to avoiding square coprimes and disregarding odd orders, which is simpler in practice.
Even still, our techniques may be useful in the near future, while demonstrations are restricted to
factoring small numbers. The most convincing demonstrations of the QOFA are those that return a
non-power-of-two order, making odd orders that lead to the factors attractive to experimentalists.

I. INTRODUCTION

The most famous application of quantum computers
is Shor’s factoring algorithm (SFA), which promises to
factor a number, N , in time O((logN)3), much faster
than the best known classical routines whose run time
increases exponentially in the length of N . SFA has been
extensively studied theoretically, but it has not yet been
convincingly demonstrated in the lab; the difficulty of
controlling quantum systems means just a handful of ex-
periments have been done, to test the basic principles [1–
6]. These experiments are too simple to be of practical
use but are, nonetheless, important. They have revealed
previously unappreciated quirks of the algorithm, one of
which – the role of odd orders – is the subject of this
letter.

Much of SFA can be done quickly on a classical com-
puter: the Euclidean algorithm lets one pick the coprime,
a, at random, and calculate the factors given r. The part
which is slow classically – and speeded-up by quantum
mechanics – is the process at the heart of SFA: calculat-
ing r. The quantum order finding algorithm (QOFA) uses
phenomena such as quantum superposition and entangle-
ment to calculate r efficiently. Even though in practice
this is the hardest part of SFA to build, it is not the only
source of failure. Sometimes, despite the QOFA finding r
correctly, the classical algorithm does not return p1 and
p2. (We assume that the QOFA returns r with certainty,
although in practice the QOFA will occasionally fail to
find r, either though experimental error, or because the
continued fractions algorithm has not worked.) Given r,
failure occurs when the QOFA returns either the trivial
factors, 1 and N , or an odd value of r, in which case a

r
2±1

is not generally integer and the QOFA is relaunched with
a different value of a [7].

However, a recent paper [1] (to which the author con-
tributed) noted that the factors can sometimes be found
from odd values of r, if a is square. This is interesting
for two reasons. First, it contradicts the almost univer-
sally held belief that odd orders are not useful: every
description of SFA specifies that odd orders should be
disregarded (see, for example, reference [7]).

Second, considering odd orders may improve the suc-
cess probability of factoring. Several studies have consid-
ered modifying the classical part of the algorithm so as
to speed up SFA [8–11]. The goal is generally to reduce
the dependence on quantum processing by replacing it
with a classical computation. The benefits of this tech-
nique are generally underestimated when viewed purely
in terms on efficiency. Each quantum circuit, being a
physical experiment, must be constructed in the labora-
tory, a process which is slow, and costly in resources; for
some architectures, photonics, for instance, a new circuit
must be built for each calculation. A common strategy is
to reduce the probability of finding useless orders which,
though not fatal to the exponential speed-up, contribute
significantly to the run-time of SFA. So far, studies do-
ing this have concentrated on reducing the occurrence of
odd orders, assuming them not to be useful [8, 9]. The
most successful of these is reference [8], which shows that
odd orders can be avoided by picking a coprime that is
non-square under modular arithmetic, a property one can
efficiently check using the Jacobi symbol.

Knowing that odd orders can in fact be useful, we re-
verse this logic, asking whether the success rate of SFA
is improved by considering odd orders. For instance,
it is conceivable that finding the factors is easier us-
ing square coprimes, which precipitate the useful kind
of odd orders. Such as result would boost the efficiency
of SFA significantly. Alas, as we show, this is not the
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case. Nonetheless, a small improvement is possible. By
presenting two techniques – considering odd orders, and
checking for new order-finding relations which can be a
consequence of failure – we show that the factors can be
found from a square coprime, providing they would have
been found from its (non-square) root, for which it is
not necessary to consider odd orders. In other words, if
the goal is to improve the success rate of SFA, simplest
is to avoid square coprimes rather than to consider odd
orders; despite a different starting point, we reach the
same conclusion as reference [8]. The fact that randomly
picked coprimes are unlikely to be square, especially for
large N , means the improvement is small (smaller than
that proposed in reference [8], which benefits from using
the stronger property of non-squareness under modular
arithmetic).

Even still, in practice our techniques for using odd or-
ders may be useful, especially in the near future. Demon-
strations of the QOFA are more convincing when the or-
der is not a power of two, r 6= 2p for integer p, since
the output of such an experiment is sensitive to imper-
fections throughout the circuit [1, 12]. In contrast, the
output of a experiment returning r = 2p matches that of
a malfunctioning, non-entangling circuit, making it hard
to know if the circuit is working correctly. While imper-
fect technology restricts the size of demonstrations, odd
orders that lead to the factors are particularly attractive,
accounting for many of the orders of the form r 6= 2p for
small r. This is precisely why Martin-Lopez et al. [1]
considered factoring N = 21 using square coprime a = 4,
giving order r = 3: it is the simplest calculation which
tests the efficacy of the quantum circuit, but which still
leads to the factors.

II. ORDER FINDING

Before investigating the role of odd orders, we review
the classical part of SFA, showing where the factors come
from.

By assumption, r is the smallest integer that respects
ar mod N = 1, or, equivalently,

N |
(
a

r
2 − 1

)(
a

r
2 + 1

)
, (1)

where | means divides. Assuming that a
r
2 is integer, the

factors can be found provided two conditions are met,

N -a
r
2 − 1 (2)

N -a
r
2 + 1, (3)

where - means does not divide. If so, a
r
2 ± 1 must each

be divisible by one of the factors of N and, hence, the
factors are p1 = gcd(a

r
2 −1, N) and p2 = gcd(a

r
2 +1, N).

If one of the conditions (2) or (3) is not met, a factor
will not be found, except if it is equal to one, two or
N , in which case N is either even (and is, thus, easy
to factor without a quantum computer) or one of the

trivial factors has been found. For instance, the factor
p1 = gcd(a

r
2 − 1, N) divides a

r
2 − 1. If condition (3)

is not satisfied (so that N |a r
2 + 1), p1 must also divide

a
r
2 + 1, which is only possible if p1 ≤ 2 since p1, a and r

are integers. Furthermore, the relation N |a r
2 + 1 implies

p2 = N , a trivial factor. (The same argument can be
applied to the condition (2).) Hence, for any interesting
N , we consider the conditions (2) and (3) necessary and
sufficient for finding the factors.

The QOFA returns the trivial factors when these con-
ditions are not satisfied. But the subject of this letter is
the second cause of failure, odd values of r.

III. FACTORING WITH ODD ORDERS

Martin-Lopez et al. [1] considered factoring 21 with
the coprime four giving order three. Despite the order
being odd, the algorithm successfully returns the factors,
3 = gcd(4

3
2 + 1, 21) and 7 = gcd(4

3
2 − 1, 21), which are

integer because the coprime is square.
Square coprimes do not always allow this trick, how-

ever. Take factoring 21 with coprime 16. The order
three leads to the trivial factors gcd(16

3
2 + 1, 21) = 1

and gcd(16
3
2 − 1, 21) = 21 because the condition (2) is

not met, 21|16
3
2 − 1.

So how often are the factors found from odd orders? To
calculate this we must know the effect of square coprimes.

We start with a definition. Let a square number, b, be
written

b = a2
m

, (4)

for positive integer m, in terms of a non-square root, a.
We define the order s to be the smallest integer satis-

fying the order relation for coprime b,

bs mod N = 1, (5)

which, according to equation (4), can be written a2
ms

mod N = 1. Clearly a has its own order, r,

ar mod N = 1. (6)

Since r is optimal – there is no smaller integer satisfying
equation (6) – we have r|2ms. Without loss of generality
we write r = 2nr0, where r0 is odd, and hence,

s = x2n−mr0, (7)

where x is the smallest positive integer such that s is
integer. The value of x depends on n and m.

First, consider n > m, meaning that r is even (since
m > 0). In this case x = 1 and s = 2n−mr0 (which is
even) and so the order finding relation,

b2
n−mr0 mod N = 1, (8)

is identical to equation (6); here, order finding with b is
the same process as order finding with a.
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Second, if n = m (meaning r is even) then, again,
x = 1, the order finding relation for b is identical to that
for a. But this time s is odd, s = r0.

Finally, if n < m, then x = 2m−n and s = r0 (so s is
odd). Equation (5) can be written in terms of a and r,

ar2
m−n

mod N = 1. (9)

2m−n−1 is integer, so the condition (2) is not satisfied,

N |ar2m−n−1 − 1, and, thus, the factors are not found.
Using coprime b, SFA gives the factors only in the

first case – when s is even – and only if a also gives the
factors. Considering odd orders improves this slightly.
When n = m, the factors, b

r0
2 ± 1 are identical to

those arising from the coprime a, a
2nr0

2 ± 1, and so are
found whenever they would have been found using a.
This explains the calculation by reference [1], where the
coprime b = 4 gave order s = 3, equivalent to using a = 2
as the coprime, giving order r = 6 (here, m = n = 1).

A second observation sometimes lets us retrieve the
factors from a failed calculation. Factoring N = 21 with
the coprime b = 16 fails because the condition (2) is not
met. But this implies a new order finding relation, in
terms of the coprime a = 4,

16
3
2 mod 21 ≡ 43 mod 21 = 1. (10)

We have recovered the calculation of reference [1] which,
of course, does satisfy the two conditions and leads to the
factors, gcd(4

3
2 ± 1, 21). This works when n < m. Fail-

ing the condition (2), N |ar2m−n−1 − 1, implies an order

finding relation for the coprime
√
b = a2

m−1

,

ar2
m−n−1

mod N = 1. (11)

This process can be repeated; the factors are not found if

N |ar2m−n−2−1, in which case we have recovered the order

finding relation for the coprime b
1
4 = a2

m−2

. After m−n
repetitions we arrive at equation (6), and the problem is
reduced to order finding with the root, a.

IV. THE EFFECT ON EFFICIENCY

These two techniques – considering odd orders and col-
lapsing the coprime to its root – let us find the factors
from coprime b and (odd) s iff (if and only if) the root
a would have given them using the normal SFA proce-
dure. They imply that the probability of factoring can be
improved by considering only non-square coprimes. We
now calculate this improvement.

Let us consider SFA – without excluding square co-
primes – for factoring N = p1p2.

Let the coprime c, picked uniformly at random (1 <
c < N), have order t,

ct mod N = 1. (12)

When c is the (non-square) root we will consider coprime
c = a (giving order r), otherwise we will use c = b (with
order s).

SFA finds the factors – given c and t – with probability

P (factors|c, t)
= P (factors|a, r)P (c = a) + P (factors|b, s)P (c = b),

= P (factors|a, r)
(
P (c = a) + P (n > m)P (c = b)

)
,

(13)

where P means probability (P (c = a) is the probability
that c is non-square, for instance) and where we have
used P (factors|b, s) = P (factors|a, r)P (n > m) since the
factors are found from b only if n > m and if they could
have been found using the coprime a.

Our techniques show that we can consider only non-
square coprimes, which lead to the factors with probabil-
ity P (factors|a, r). We compare this to the original,

P (factors|c, t)
P (factors|a, r)

= P (c = a) + P (n > m)P (c = b). (14)

But,

P (t even) ≡ P (n > 0)P (c = a) + P (s even)P (c = b)

≥ P (n > m) (15)

because P (s even) = P (n > m) and P (n > 0) ≥ P (n >
m) since m > 0, meaning that

P (factors|c, t)
P (factors|a, r)

≤ P (c = a) + P (t even)P (c = b). (16)

The probability that c is non-square is P (c = a) =

1 − 1/
√
N . This also defines P (c = b) since P (c =

a) + P (c = b) = 1. All that remains is to calculate the
probability of t being even. We assume that pi−1 = 2qi,
where qi are odd, corresponding to the hardest numbers
to factor both quantumly, since it leads to lots of odd or-
ders, and classically, using algorithms such as that pro-
posed in reference [13], which rely on pi being smooth.
Numbers of this form are thus likely candidates for SFA.
In this case P (t even) = 3/4, following the argument of
reference [7]. For completeness we sketch the proof here.

Proof The Chinese remainder theorem (CRT) tell us
that choosing c uniformly at random from 1 < c < N
is equivalent to randomly picking two integers, c1 (1 <
c1 < p1) and c2 (1 < c2 < p2), where c = ci mod pi. Let
ti be the order satisfying

ctii mod pi = 1. (17)

According to the CRT this order finding relation is also
satisfied by t, giving t = LCM(t1, t2), where LCM means
least common multiple. t is odd only when both t1 and
t2 are odd. How likely is this? Answering this is made
easier by the fact that the multiplicative group mod p1 is
cyclic. The elements of this group can be written in terms
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of a generator, g. Thus, ci ≡ gk mod pi for some integer
k (1 ≤ k ≤ pi − 1). The order finding relation implies
gkti mod pi = 1. But gpi−1 mod pi = 1, meaning that
pi − 1|kti. pi − 1 is even and so, if k is odd, ti must be
even. Alternatively, if k is even,

g(pi−1) k
2 mod pi = 1, (18)

so ti must be odd since it divides (pi − 1)/2 = qi. The
probability that ti is odd is therefore the probability that
k is even, which is 1/2 since ci is picked at random.
Hence, P (t even) = 1− P (t1 odd)P (t2 odd) = 3/4.

In the best case, assuming pi − 1 = 2qi, avoiding non-
square coprimes improves the probability of success of
SFA,

P (factors|c, t)
P (factors|a, r)

≤ 1− 1

4
√
N

. (19)

V. DISCUSSION

In this letter we correct a common misconception,
showing that odd orders do play a useful role in factor-
ing, and should not be neglected outright. The existence
of useful odd orders raises the question of improving the
efficiency of SFA. We show that an improvement is pos-
sible, most simply by avoiding square coprimes. We are
not the first to suggest this: Markov & Saeedi use numer-
ical evidence to argue that SFA should use small prime
coprimes like a = 2, 3 and 5 [9]; Leander showed how
to avoid odd orders by picking coprimes that are non-
square under modular arithmetic, a property that can be
efficiently checked using the Jacobi symbol [8]. Here, we
highlight another advantage of avoiding square coprimes:
that a square and its root is never picked in different
runs of the same calculation which, as we have shown,

is a waste of resources; working through the coprimes
in order, a = 2, 3, 4, . . ., until the factors are found is
certainly not efficient!

The improvement we propose is small, especially as N
becomes large. (Indeed, it is smaller than that proposed
by Leander.) Nonetheless, the role of odd orders needed
to be investigated to know that larger gains were not
possible. Furthermore, for proof of principle experiments,
odd orders may be desirable, especially in the near future,
while young technologies restrict demonstrations to very
small numbers. In this case, odd orders which lead to the
factors are particularly attractive, since they are sure to
avoid problematic power-of-two orders, r = 2p.

Quantum subroutines are – and will probably remain
for some time – much harder to implement than classi-
cal ones. This is especially true of quantum circuits that
use young, imperfect technologies, which introduce their
own errors and hold-ups, and may need to be reconfig-
ured each time the calculation changes. While this is the
case small improvements in efficiency may give substan-
tial savings in run-time.

As we have shown, even well studied algorithms like
SFA are not fully understood. With luck, a better
knowledge of the algorithm will lead to better efficiency
saving techniques, just as technological understanding
has improved experimental demonstrations of the algo-
rithm. Eventually, this will make experimentalists’ lives
easier, and bring about a convincing demonstration of
SFA all the more quickly.

Acknowledgments
Thanks to Frederic Grosshans, Marc Kaplan, Anthony
Laing, Marc-Andre Lajoie, Enrique Martin-Lopez and
Benjamin Smith for valuable discussions. The author
acknowledges support from Digiteo and the City of Paris
project CiQWii.

[1] E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q.
Zhou, and J. L. O’Brien, Nat Photon 6, 773 (2012).

[2] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yan-
noni, M. H. Sherwood, and I. L. Chuang, Nature 414,
883 (2001).

[3] C.-Y. Lu, D. E. Browne, T. Yang, and J.-W. Pan, Phys.
Rev. Lett. 99, 250504 (2007).

[4] B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Bar-
bieri, D. F. V. James, A. Gilchrist, and A. G. White,
Phys. Rev. Lett. 99, 250505 (2007).

[5] A. Politi, J. C. F. Matthews, and J. L. O’Brien, Science
325, 1221 (2009).

[6] E. Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni,
A. Megrant, P. O’Malley, D. Sank, A. Vainsencher,
J. Wenner, T. White, Y. Yin, A. N. Cleland, and J. M.
Martinis, Nat Phys 8, 719 (2012).

[7] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge U.P., 2000).

[8] G. Leander, arXiv: 0208183 [quant-ph] (2002).
[9] I. L. Markov and M. Saeedi, Quantum Info. Comput. 12,

361 (2012).
[10] P. W. Shor, SIAM J. Sci. Statist. Comput. 26, 1484

(1997).
[11] E. Knill, “On shor’s quantum factor finding algorithm:

Increasing the probability of success and tradeoffs involv-
ing the fourier transform modulus,” Tech. Report LAUR-
95-3350, Los Alamos Natl. Lab (1995).

[12] J. A. Smolin, G. Smith, and A. Vargo, Nature 499, 163
(2013).

[13] J. M. Pollard, Mathematical Proceedings of the Cam-
bridge Philosophical Society 76, 3049 (1974).

http://dx.doi.org/10.1038/nphoton.2012.259
http://dx.doi.org/http://dx.doi.org/10.1038/414883a
http://dx.doi.org/http://dx.doi.org/10.1038/414883a
http://dx.doi.org/ 10.1103/PhysRevLett.99.250504
http://dx.doi.org/ 10.1103/PhysRevLett.99.250504
http://dx.doi.org/ 10.1103/PhysRevLett.99.250505
http://dx.doi.org/10.1126/science.1173731
http://dx.doi.org/10.1126/science.1173731
http://dx.doi.org/10.1038/nphys2385
http://dl.acm.org/citation.cfm?id=2230996.2230997
http://dl.acm.org/citation.cfm?id=2230996.2230997

	Odd orders in Shor's factoring algorithm
	Abstract
	I Introduction
	II Order finding
	III Factoring with odd orders
	IV The effect on efficiency
	V Discussion
	 References


