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Abstract

The interaction of two identical three-level atoms of the types V , Ξ and Λ with a quantized

cavity field as well as a driving external classical field is studied. Under two certain unitary

transformations, the system is converted to a typical form of the Jaynes-Cummings model for

two three-level atoms. The exact analytical solutions of the wave function for different considered

atom-field systems are exactly obtained with the help of the Laplace transform technique, when

the atoms are initially prepared in the topmost excited state and the quantized field is in a coherent

state. In order to examine the nonclassicality features of the deduced states, the dynamics of the

entanglement between subsystems is discussed via two well-known measures, namely, von Neumann

entropy of the reduced state and negativity. In addition, we pay attention to the temporal behaviour

of quantum statistics of the photons of the field and squeezing phenomenon. Meanwhile, the

influence of the external classical field on the latter physical quantities is analyzed in detail. The

results show that the mentioned quantities can be sensitively controlled via the external classical

field. Also, numerical computations imply the fact that the nonclassicality features in Ξ-type three-

level atomic system is more visible than the other two configurations. In addition, it is shown that

in the particular case of Λ-type atomic system, the rank of the reduced density matrix of the

three-level atoms is no larger than three, so that negativity fully captures the entanglement of this

system and that such entanglement is distillable.

PACS numbers: 42.50.Ct, 03.65.Ud, 89.70.Cf, 42.50.Dv.
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I. INTRODUCTION

The light-matter interaction is an essential concern in optical physics. A simple paradigm

of this interaction contains a two-level atom coupled to a single-mode quantized radiation

field in an optical cavity. Whenever the strength of the atom-field coupling is far smaller

than the field frequency, the rotating wave approximation (RWA) is applicable and the sys-

tem is described by the well-known Jaynes-Cummings model (JCM) [1, 2]. The simplicity

of this model and its potential applications for more complicated and generalized atom-field

systems, together with revealing some non-trivial phenomena and extraordinary character-

istics, such as the collapses and revivals of Rabi oscillations in atomic population inversion

[3], placed the JCM at the heart of this area of research in quantum optics. Experimentally,

this model can be realized when atoms are coupled to a nanomechanical oscillator [4] and

nuclear spins interacting with a magnetic field [5]. Many generalizations of the JCM have

been proposed in various ways, for instance, considering different initial conditions [6], enter-

ing the effects of dissipation and damping in the model [7], considering intensity-dependent

coupling [8–11], adopting a multi-level atom [12–14] as well as a multi-photon transition [15]

and a multi-atom [16, 17].

From another perspective of this area of research, in recent decades, a lot of attention has

been paid to the study of different configurations of three-level atoms (V , Ξ and Λ type)

. For example, there exist many theoretical works containing the interaction between a

three-level atom and a single-mode cavity field [18–21]. In some of them, some nonclassi-

cality features have been examined by considering the resonance condition between atomic

transitions and quantized field frequency. The nonclassical properties of three-level atomic

systems have been well investigated in order to understand the quantum coherence phenom-

ena such as electromagnetically induced transparency (EIT) [22], lasing without inversion

[23], and coherent trapping [24]. In detail, the V -type three-level atoms are extensively

used in studying nonclassicality features such as quantum beats [24], quantum Zeno effect

[25] and quantum jumps [26]. The application of Ξ-type atoms is well established in the

coherent population trapping [27] and also the experiments which are designed to achieve

laser cooling in trapped ions [28]. Also, the Λ-type atomic systems have been widely utilized

in representing the coherent phenomena such as EIT [22] and stimulated Raman adiabatic

passage [29].
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In particular and in direct relation to the present work, the dynamics of a physical system

governed by the JCM can lead to the highly atom-field entangled state, almost as though the

atom and the field can form some sort of “molecule” [30]; the case that is obviously revealed

through the vacuum Rabi splitting [31]. It may be noted that, although, such experiment

regarding the observation of a molecule is not usually a routine work, however, this may be

naturally probed through an external field. Furthermore, strong driving fields have shown

other attractive applications in the atom-field interaction such as detection of Fock states of

the radiation field [32], quantum-phase gate [33], generation of the multi-partite entangled

states [34–36] and controlling nonclassical properties of system [37]. Henceforth, the driving

JCM (DJCM), that is, the JCM which contains an external driving field, has attracted much

attention in recent decades [38–41] . The model for a two-level atom interacting with exter-

nal quantum and classical electric fields through a parametric frequency converter has been

presented in [42]. In this attempt, the system is detracted to an effective JCM by adequate

adjustment of the field coupling in the frequency converter. In addition, it has been shown

that the dynamics of physical quantities related to the atom and the atom-photon entan-

glement can be controlled by the classical field. The implementation of a strongly driven

one-atom laser, based on the off-resonant interaction of a Λ-type three-level atom with a

single-mode cavity field and three laser fields have been schematically proposed in [43]. The

authors showed that the system can be equivalently described by a two-level atom reso-

nantly coupled to the cavity field assisted by a strong effective coherent field. Altogether,

in all above discussions, it seems that the driving external field is a suitable parameter for

controlling the nonclassicality features, especially entanglement of the atom-field systems.

In this paper, we aim to study the problem of two identical three-level atoms in three dif-

ferent types (V , Ξ and Λ configurations) interacting with a single-mode cavity field in the

presence of an external classical field through which new classes of entangled state can be

generated. In working with the mentioned configurations, we are able to transform the

interaction formalism to the generalized JCM by applying two appropriate unitary trans-

formations. The explicit form of the entangled state vector of the whole system can then

be exactly obtained by using the time-dependent Schrödinger equation with the help of the

Laplace transform technique. In this respect, we take the atoms to be prepared in their

higher excited states and the field is supposed to be in a coherent state. Then, briefly the

main goal of this paper is to investigate the effect of external classical field on the entan-
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glement dynamics between subsystems and some of the well-known nonclassicality features.

To achieve this purpose, the degree of entanglement (DEM) between subsystems through

von Neumann entropy of the reduced state (to investigate the atom-field entanglement) and

negativity (to obtain the atom-atom entanglement) are numerically studied. Also, the time

evolution of quantum statistics and squeezing are examined in detail. We show that the

dynamics of the mentioned physical quantities can be tuned by the strength of the external

classical field.

In order to give more explanation about our motivations, it is instructive to give a few

words regarding the significance and the notability of the considered systems containing the

three-level atoms. In quantum information processing (QIP) the three-level systems possess

outstanding advantages in comparison with two-level ones [44]. In this regard, the optimal

eavesdropping in quantum cryptography with three-dimensional systems has been studied in

[45] in which the authors found that the three-dimensional scheme offers higher security than

the two-dimensional systems. Kaszlikowski et al investigated the general case of two entan-

gled quantum systems defined in d-dimensional Hilbert spaces, or ‘qudits’ and have shown

that violations of local realism are stronger for two maximally entangled qudits (3 ≤ d ≤ 9)

than for two qubits [46]. Also, based on the Greenberger-Horne-Zeilinger (GHZ) theorem,

the conflict of local realism and quantum mechanics for three or more qubits has been re-

ported much sharper than for two qubits [47]. In this case, there exist some suggestions

which indicate the reduction of this conflict due to increasing d (dimension of Hilbert space)

[48–50]. So, it seems that d-level quantum systems, or qudits, may be better candidates

to be utilized in the theoretical/experimental observations. The mainspring of this usage

is to increase the available Hilbert space with the same amount of physical resources [51].

Accordingly, three-level atoms have received noticeable attention in the studies that concern

with the atom-field interaction [52–55]. In particular and in direct relation to the consid-

ered model in this paper, quantum information processing using superconducting qubits

has made outstanding advances in the past few years [56, 57]. One-qubit and two-qubit

quantum circuits have been realized experimentally in superconducting systems. One of the

most important issues in quantum information processing is how to couple two qubits, which

has been widely studied theoretically and experimentally in superconducting quantum cir-

cuits. Theoretical proposals have been put forward to selectively couple any pair of qubits

through a common data bus (LC circuit or a cavity field) [58, 59]. Liu et al. experimentally
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presented a proposal to achieve a controllable interaction between flux qubit by virtue of

time-dependent electromagnetic field [60]. Also, a coupling (decoupling) method between a

superconducting qubit and a data bus that uses a controllable time-dependent electromag-

netic field (TDEF) have been studied theoretically in [61]. This reference indicates that, by

choosing appropriate parameters for the TDEF, the dressed qubit (qubit plus the electro-

magnetic field) can be coupled to the data bus and, thus, the qubit and the data bus can

exchange information with the assistance of the TDEF. The superconducting qubit circuits

generalized to superconducting qudit circuits for more complex quantum computational ar-

chitectures, and for richer simulations of quantum mechanical systems [62]. The considered

model in this paper may be supposed as a superconductor with two qutrits (three-level

atoms), LC circuit (single-mode cavity field) and TDEF (the classical field). In this case,

the entanglement between two qutrits as well as between two qutrits and a single-mode field

can be controlled by external classical field.

The reminder of the paper is structured as follows. In the next section, the model containing

all existing interactions is introduced and then by applying two distinct unitary transfor-

mations, the model is reduced to the typical form of the generalized JCM. In section III,

the state vector of the whole atom-field systems is analytically obtained. Section IV deals

with examining the effect of external classical field on the DEM between subsystems via von

Neumann reduced entropy and negativity. In addition, in order to study the nonclassicality

features of the obtained states, Mandel parameter and quadrature squeezing are respectively

investigated in sections V and VI. Finally, the main results of the paper are summarized in

section VII.

II. DESCRIPTION OF THE MODEL

We consider two identical three-level atoms (labeled by A and B) in three different

configurations (namely V, Ξ and Λ types as depicted in figure 1), with states |1〉, |2〉, and |3〉
and their corresponding energies ω1, ω2, and ω3. The atomic system is driven by an external

classical field with frequency ωc, and is coupled to a single-mode quantized radiation field
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with frequency ωf . Accordingly, the total Hamiltonian can be appropriately described by

Ĥ =
∑

j=A,B

3
∑

i=1

ωiσ̂
(j)
ii + ωf â

†â + g1
∑

j=A,B

(σ̂
(j)
1 â + σ̂†(j)

1 â†)

+ g2
∑

j=A,B

(σ̂
(j)
2 â+ σ̂†(j)

2 â†) + λ1
∑

j=A,B

(σ̂
(j)
1 e−iωct + σ̂†(j)

1 eiωct)

+ λ2
∑

j=A,B

(σ̂
(j)
2 e−iωct + σ̂†(j)

2 eiωct), (1)

where σ̂ii = |i〉〈i| is the atomic projection operator, â and â† are respectively the bosonic

annihilation and creation operators of the field, gi and λi, i = 1, 2 represent the coupling

constants of the interaction of the atoms with the quantized radiation and with the classical

driving fields, respectively. Also, the values of (σ̂1, σ̂2) for the three configurations are given

by (σ̂13, σ̂23)V , (σ̂12, σ̂23)Ξ and (σ̂12, σ̂13)Λ. In the rotating reference frame with frequency

ωc and under a unitary transformation Û1(t) = exp[−iωct(â
†â +

∑

j=A,B(σ̂
′(j)
1 + σ̂

′(j)
2 ))], the

above Hamiltonian can be transformed to

Ĥ1 = Û †
1(t)ĤÛ1(t)− iÛ †

1 (t)
dÛ1(t)

dt

= ∆1

∑

j=A,B

σ̂
′j
1 +∆2

∑

j=A,B

σ̂
′j
2 +∆â†â

+ g1
∑

j=A,B

(σ̂
(j)
1 â + σ̂†(j)

1 â†) + g2
∑

j=A,B

(σ̂
(j)
2 â+ σ̂†(j)

2 â†)

+ λ1
∑

j=A,B

(σ̂
(j)
1 + σ̂†(j)

1 ) + λ2
∑

j=A,B

(σ̂
(j)
2 + σ̂†(j)

2 ), (2)

where the values (σ̂
′

1, σ̂
′

2) of the three-level atom are in the form (σ̂11, σ̂22), (σ̂11,−σ̂33) and
(−σ̂22,−σ̂33), respectively for V -, Ξ- and Λ-type atoms. The parameter ∆ = ωf − ωc is

the detuning parameter between the cavity field and the classical driving field. Also, the

detuning parameters between the classical field and the atoms are given by ∆1 = (ω1−Ω1)−
ωc and ∆2 = (Ω2 − ω3)− ωc, in which the values of (Ω1,Ω2) in three configurations read as

(ω3, ω2)V , (ω2, ω2)Ξ and (ω2, ω1)Λ. It is seen that by applying the mentioned transformation,

the time-dependent exponential terms in the Hamiltonian (1) have been clearly eliminated.

Now, for simplicity, let us follow the problem in the resonance conditions. Also, without

loss of generality, we suppose g1 = g2 = g and λ1 = λ2 = λ. Under these assumptions, we
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can recast the Hamiltonian (2) as follows

Ĥ1 = g
∑

j=A,B

(σ̂
(j)
1 â+ σ̂

(j)
2 â+ σ̂†(j)

1 â† + σ̂†(j)

2 â†)

+ λ
∑

j=A,B

(σ̂
(j)
1 + σ̂

(j)
2 + σ̂†(j)

1 + σ̂†(j)

2 ). (3)

If λ = 0, then Eq. (3) describes the generalized JCM for the interaction between two three-

level atoms and a single-mode quantized cavity field, while the case λ 6= 0 corresponds to

generalized DJCM for two three-level atoms. Now, in order to analyze the dynamics of the

considered system with the Hamiltonian (3), we utilize the probability amplitude method.

Altogether, it is not still an easy work to solve the above system analytically. This is due

to the existence of the external classical field in addition to the terms which are connected

to the interaction between two three-level atoms and single-mode quantized field. Therefor,

before using this approach, we try to reduce the Hamiltonian (3) to the typical form of the

generalized JCM for two three-level atoms. This goal will be achieved by introducing the

following displacement operator

D̂(γ) = exp(γâ† − γ∗â), γ =
λ

g
, (4)

which satisfies the identity

D̂(γ)âD̂†(γ) = â− γ. (5)

In this case, by applying the unitary operator given in (4), the Hamiltonian (3) is converted

to the Hamiltonian of the form

Ĥ2 = D̂(γ)Ĥ1D̂
†(γ) = g

∑

j=A,B

(σ̂
(j)
1 â + σ̂

(j)
2 â+ σ̂†(j)

1 â† + σ̂†(j)

2 â†). (6)

Briefly, up to now we used the two transformations (the local transformation Û1(t) and the

displacement operator D̂(γ)) for reducing the Hamiltonian (1) to the typical generalization

of the JCM for two three-level atoms. It is worth noticing that, the physical properties as

well as the initial conditions of any system are preserved under the local transformation.

But the second transformation (displacement operator) changes the initial condition and

the physical features of the system. Henceforth, by using the Hamiltonian (6) and defining

the state vector |ψ2(t)〉 = D̂(γ)|ψ(t)〉, one may consider the time-dependent Schrödinger

equation corresponding to |ψ2(t)〉 as i∂|ψ2(t)〉/∂t = Ĥ2|ψ2(t)〉, from which one easily obtain

|ψ(t)〉 = D̂†(γ)|ψ2(t)〉. In the next section, we are going to evaluate the state vector |ψ2(t)〉
for different configurations of the three-level atoms.
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III. THE ENTIRE STATE VECTOR OF THE SYSTEM

The main goal of this section is to obtain the state vector of the considered systems.

Before achieving this purpose, it is necessary to determine the initial conditions of the

atoms as well as the field. We consider the field to be initially in the coherent state and

suppose that the atoms enter to the cavity in the upper exited state, i.e.,

|ψ(t = 0)〉 = |1, 1〉|α〉, |α〉 = exp

(

−|α|2
2

) ∞
∑

n=0

αn

√
n!
|n〉. (7)

Hence, the state vector |ψ2(t = 0)〉 may be obtained by the following relation

|ψ2(t = 0)〉 = D̂(γ)|1, 1〉|α〉 = |1, 1〉D̂(γ)D̂(α)|0〉 = |1, 1〉|β〉, (8)

where we have used the identity

D̂(γ)D̂(α) = exp(iℑ(γα∗))D̂(β), (9)

so that β = α + γ. The factor exp(iℑ(γα∗)) is dropped because the parameters γ and α

have been supposed to be real. By considering this initial condition for |ψ2(t)〉, the wave

function for the considered systems are obtained separately, in the next subsections.

A. Two V -type three-level atoms

The wave function |ψ2(t)〉 at any time t for two V -type three-level atoms may be written

as,

|ψ2(t)〉V =
∞
∑

n=0

(

C1(n, t)|1, 1, n〉+ C2(n, t)
(

|1, 2, n〉+ |2, 1, n〉
)

+ C3(n+ 1, t)
(

|1, 3, n+ 1〉+ |3, 1, n+ 1〉
)

+ C4(n+ 1, t)
(

|2, 3, n+ 1〉+ |3, 2, n+ 1〉
)

+ C5(n, t)|2, 2, n〉+ C6(n+ 2, t)|3, 3, n+ 2〉
)

, (10)

where the coefficients Ci, i = 1, 2...6, are the unknown probability amplitudes that should

be determined. By inserting the assumed wave function (10) into the time-dependent

Schrödinger equation together with considering the Hamiltonian (6), the following coupled
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differential equations for the probability amplitudes may be found:

dC1(n, t)

dt
= −iV1C3(n+ 1, t),

dC2(n, t)

dt
= −iV1

(

C3(n+ 1, t) + C4(n+ 1, t)

)

,

dC3(n + 1, t)

dt
= −iV1

(

C1(n, t) + C2(n, t)

)

− iV2C6(n + 2, t),

dC4(n + 1, t)

dt
= −iV1

(

C2(n, t) + C5(n, t)

)

− iV2C6(n + 2, t),

dC5(n, t)

dt
= −2iV1C4(n + 1, t),

dC6(n + 2, t)

dt
= −2iV2

(

C3(n + 1, t) + C4(n+ 1, t)

)

, (11)

where V1 = V (n+1) and V2 = V (n+2) and V (n) = g
√
n. After some lengthy calculations,

we obtain the probability amplitudes via the Laplace transform techniques as below:

C1(n, t) =
1

4
C1(n, 0)

(

2 cos(
√
2V1t) +

V 2
1 + 2V 2

2 + V 2
1 cos(2ϑt)

ϑ2

)

, (12a)

C2(n, t) = −1

2
C1(n, 0)

V 2
1 sin2(ϑt)

ϑ2
, (12b)

C3(n + 1, t) =
−i
4
C1(n, 0)

(

√
2 sin(

√
2V1t) +

V1 sin(2ϑt)

ϑ

)

, (12c)

C4(n+ 1, t) =
i

4
C1(n, 0)

(

√
2 sin(

√
2V1t)−

V1 sin(2ϑt)

ϑ

)

, (12d)

C5(n, t) =
1

4
C1(n, 0)

(

− 2 cos(
√
2V1t) +

V 2
1 + 2V 2

2 + V 2
1 cos(2ϑt)

ϑ2

)

, (12e)

C6(n+ 2, t) = −C1(n, 0)
V1V2 sin

2(ϑt)

ϑ2
, (12f)

where ϑ =
√

V 2
1 + V 2

2 and C1(n, 0) = exp(−|β|2/2)βn/
√
n! determines the probability of

the initial field state.
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B. Two Ξ-type three-level atoms

In a similar manner, the state vector |ψ2(t)〉 for two Ξ-type three-level atoms is given by:

|ψ2(t)〉Ξ =

∞
∑

n=0

(

C1(n, t)|1, 1, n〉+ C2(n+ 1, t)
(

|1, 2, n+ 1〉+ |2, 1, n+ 1〉
)

+ C3(n+ 2, t)
(

|1, 3, n+ 2〉+ |3, 1, n+ 2〉
)

+ C4(n+ 3, t)
(

|2, 3, n+ 3〉+ |3, 2, n+ 3〉
)

+ C5(n+ 2, t)|2, 2, n+ 2〉+ C6(n+ 4, t)|3, 3, n+ 4〉
)

. (13)

Following the same procedure as subsection IIIA, the values of the coefficients Ci are ob-

tained as below:

C1(n, t) =
C1(n, 0)

x2η

(

(x2 − x4)η + (2V 2
1 x2 − β2

2x4) cos(β1t)

− (2V 2
1 x2 − β2

1x4) cos(β2t)

)

, (14a)

C2(n+ 1, t) =
iC1(n, 0)

2β1β2ηV1

(

(x4 − 2β2
1V

2
1 )β2 sin(β1t)

− (x4 − 2β2
2V

2
1 )β1 sin(β2t)

)

, (14b)

C3(n+ 2, t) =
C1(n, 0)

x2η

(

− x5η − (β2
2x5 − V1V2x2) cos(β1t)

+ (β2
1x5 − V1V2x2) cos(β2t)

)

, (14c)

C4(n+ 3, t) =
−ix1C1(n, 0)

2V4η

(

sin(β1t)/β1 − sin(β2t)/β2

)

, (14d)

C5(n+ 2, t) =
2C1(n, 0)

x2η

(

− x5η − (β2
2x5 − V1V2x2) cos(β1t)

+ (β2
1x5 − V1V2x2) cos(β2t)

)

, (14e)

C6(n + 4, t) =
x1C1(n, 0)

x2η

(

η − β2
1 cos(β2t) + β2

2 cos(β1t)

)

, (14f)

11



with

x1 = 6V1V2V3V4, x2 = 6V 2
1 V

2
3 + 4V 2

1 V
2
4 + 6V 2

2 V
2
4 ,

x3 = 2(V 2
1 + V 2

4 ) + 3(V 2
2 + V 2

3 ), x4 = 6V 2
1 V

2
3 + 4V 2

1 V
2
4 ,

x5 = 2V1V2V
2
4 , η =

√

x23 − 4x2,

β1 =

√

x3 + η

2
, β2 =

√

x3 − η

2
,

Vj = V (n+ j), j = 1, 2, 3, 4, V (n) = g
√
n. (15)

C. Two Λ-type three-level atoms

Finally, the wave function of a system containing two Λ-type three-level atoms and a

single-mode cavity field can be written as follows

|ψ2(t)〉Λ =

∞
∑

n

[

C1(n, t)|1, 1, n〉+ C2(n+ 1, t)
(

|1, 2, n+ 1〉+ |2, 1, n+ 1〉
)

+ C3(n+ 1, t)
(

|1, 3, n+ 1〉+ |3, 1, n+ 1〉
)

+ C4(n+ 2, t)
(

|2, 3, n+ 2〉+ |3, 2, n+ 2〉
)

+ C5(n+ 2, t)|2, 2, n+ 2〉+ C6(n+ 2, t)|3, 3, n+ 2〉)
]

, (16)

where Ci are the time-dependent probability amplitudes which must be obtained. Similarly,

we arrive at

C1(n, t) = C1(n, 0)
V 2
2 + V 2

1 cos(2V3t)

V 2
3

, (17a)

C2(n + 1, t) = C3(n+ 1, t) = −iC1(n, 0)
V1 sin(2V3t)

2V3
, (17b)

C4(n+ 2, t) = C5(n + 2, t) = C6(n+ 2, t)

= −C1(n, 0)
V1V2 sin

2(V3t)

V 2
3

, (17c)

where V1 and V2 have been previously defined in (15).

Here, it ought to be mentioned that, the relation

|ψ(t)〉V,Ξ,Λ = D̂(−γ)|ψ2(t)〉V,Ξ,Λ, γ =
λ

g
(18)
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allows us to write the solution of DJCM (Eq. (1)) for two V -, Ξ- and Λ-type three-level

atoms, explicitly. For example for two Λ-type atoms the state vector is in the following form:

|ψ(t)〉Λ =
∞
∑

n

[

C1(n, t)|1, 1〉| − γ;n〉

+ C2(n + 1, t)
(

|1, 2〉| − γ;n+ 1〉+ |2, 1〉| − γ;n+ 1〉
)

+ C3(n + 1, t)
(

|1, 3〉| − γ;n+ 1〉+ |3, 1〉| − γ;n+ 1〉
)

+ C4(n + 2, t)
(

|2, 3〉| − γ;n+ 2〉+ |3, 2〉| − γ;n+ 2〉
)

+ C5(n + 2, t)|2, 2〉| − γ;n+ 2〉

+ C6(n + 2, t)|3, 3〉| − γ;n+ 2〉)
]

, (19)

where | − γ;n + j〉, j = 0, 1, 2, are the displaced number states. Similar expressions can

be simply obtained for other two types of atoms. Therefore, our proposed model can also

be considered as a novel scheme for the generation of displaced number states [63]. By

considering similar approach for two other cases (V - and Ξ-type three-level atoms), the

displaced number states can be generated, too. Anyway, we are now ready to study the

nonclassical properties of three different types of the atom-field system by emphasizing on

their entanglement properties. For this purpose we will pay attention to entanglement,

photon statistics and quadrature field squeezing.

IV. ENTANGLEMENT

Entanglement is the noticeable feature of quantum states which demonstrates correlations

that cannot be classically accounted. The first investigations of entanglement date back to

1935, focusing on surprising consequences of the quantum description of nature [64, 65].

Entangled qubits are an urgent resource in many quantum information applications such as

quantum computation and quantum communication [66], quantum metrology [67], quantum

cryptography [68], quantum teleportation [69] and other applications in quantum technology

[70, 71]. Recently, much attention has been paid to the generation of quantum entangled

states. A well-known source for the generation of such states is the atom-field interaction

process, using different models of interaction. Accordingly, the most interesting aspects of

the JCM and its generalizations, which has received much attention, is the possible existing

of entanglement between different subsystems [72–74]. So, we now pay attention to the
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evaluation of the entanglement dynamics of the obtained states. To achieve this goal, several

suitable measures of DEM such as von Neumann entropy [75], entanglement of formation

[76], concurrence [76, 77] and negativity [78] have been proposed. In this section we apply

von Neumann entropy and negativity to investigate entanglement dynamics of atom-field

and atom-atom, respectively. It ought to be mentioned that, while the von Neumann entropy

is a good measure for the atom-field entanglement, this measure is not appropriate for the

calculation of the DEM between the two atoms (this is due to the fact that in this case,

the system (the two atoms) is a mixed state). Also, the evaluation of DEM between “two

atoms” and “field” by negativity is not an easy task (its complexity arises from the fact that

to achieve this purpose we are left with the infinite dimensional Hilbert space related to the

fields).

A. von Neumann entropy

We have assumed that two three-level atoms and the coherent field are initially in a pure

state. So, the considered systems can be regarded as the bipartite systems, consisting of two

three-level atoms as the first subsystem and the radiation field as the second subsystem. For

such systems, the von Neumann entropy is a suitable measure to obtain the DEM between

subsystems [79]. Quantum mechanically, the von Neumann entropy for a quantum system

with the density operator ρ is defined as S = −Tr(ρ ln ρ). If ρ describes a pure state,

then S = 0, and if it represents a mixed state then S 6= 0. For the considered atom-field

systems, the entropy of the field or equivalently the atoms is a good measure to realize the

amount of entanglement; higher (lower) entropy means the greater (smaller) DEM. Before

obtaining the reduced entropy of the field and the atom, it is worth to pay attention to

the important theorem of Araki and Leib [80]. According to this theorem, for any bipartite

quantum system, the system and subsystem entropies at any time t are bounded by the

triangle inequality |SA(t) − SF (t)| ≤ S ≤ |SA(t) + SF (t)|, where SA and SF represent the

entropies of the atom and field, respectively, and the total entropy of the atom-field system

is denoted by S. One immediate consequence of this inequality is that, if at the initial time

the whole system is prepared in a pure state, the total entropy of the system is zero and

remains constant when the involved subsystems are isolated from their environment. This

implies that, if the system is initially in the pure state, SAF = 0, at any time t > 0 the
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field and atomic entropies are equal [81]. Therefore, instead of the calculation of the field

entropy, we can evaluate the entropy of the atoms. According to the von Neumann entropy,

the entropies of the atom and field, when treated as a separate system, are defined through

the corresponding reduced density operators as

SA(F )(t) = −TrA(F )(ρ̂A(F )(t) ln ρ̂A(F )(t)), (20)

with ρ̂A(F )(t) = TrF (A)(|ψ(t)〉〈ψ(t)|), as the reduced density operator of the atoms (field).

Now, we turn our attention to discuss the DEM between two atoms and quantized field for

three different systems through the von Neumann entropy. We assume that the considering

systems start from a pure state, so the entropy of the field/atom may be expressed by the

following relation

DEM(t) = SF (t) = SA(t) = −
9
∑

i=1

ξi ln ξi, (21)

where ξi denote the eigenvalues of the reduced density matrix of the atoms, which can be

obtained numerically for V - and Ξ-type, but analytically for Λ-type configuration. Indeed,

the density matrix of the two-atom system in the Λ-type configuration has rank no larger

than three with the associated eigenvalues evaluated, analytically, by the Cardano’s method

as [82]

ξj = −1

3
̺1 +

2

3

√

̺21 − 3̺2 cos

(

̟ +
2

3
(j − 1)π

)

, j = 1, 2, 3,

ξj = 0, j = 4, 5, 6, 7, 8, 9, (22)

with

̟ =
1

3
cos−1

[

9̺1̺2 − 2̺31 − 27̺3
2(̺21 − 3̺2)3/2

]

, (23)

and

̺1 = −ρ11 − 4(ρ22 + ρ44), (24a)

̺2 = −4(ρ12ρ21 + ρ14ρ41 + 4ρ24ρ42) + 4ρ11(ρ22 + ρ44) + 16ρ22ρ44, (24b)

̺3 = 16ρ14(ρ22ρ41 − ρ21ρ42) + 16ρ12(ρ21ρ44 − ρ24ρ41)

+ 16ρ11(ρ24ρ42 − ρ22ρ44). (24c)
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Moreover, the matrix elements of the atomic density operator are as follows:

ρij(t) =
+∞
∑

n=0

Ci(n, t)C
∗
j (n, t), i, j = 1, 2, · · ·6. (25)

where Ci(n, t) have been derived in 17. Figure 2 shows the evolution of the field entropy

against the scaled time gt for initial mean photon number fixed at |α|2 = 25 and two atoms

prepared initially in the higher exited state. Frames 1, 2, and 3 respectively concern with the

two V -, Ξ- and Λ-types three-level atoms. Also, panels (a) in this figure are plotted in the

absence of classical field (γ = 0) and panels (b) and (c) show the effect of the driving external

field on the behaviour of von Neumann entropy (γ = 2 and γ = 6). It can be obviously seen

from this figure that for three different configuration of three-level atoms, the field entropy

gets the maximum value of entanglement after the onset of the interaction. In addition,

it can be observed from frame 1 that, entering the classical field together with increasing

the related parameter may lead to the shift of the maxima amounts of the DEM when the

time proceeds. Comparing the panels 1 and 2 indicates that the temporal behaviour of two

Ξ-type three-level atoms is qualitatively the same as two V -type ones. For the case that

we deal with Λ-type three-level atoms, by considering the effect of external classical field,

it seems that the temporal behaviour of the DEM behaves oscillatory specially in the case

γ = 6. Finally, by focusing on the effect of external classical field on the behaviour of the

von Neumann entropy, it is found that the existence of the classical field may increase the

maximum values of DEM between two atoms and field in three considered systems.

B. Negativity

In the present subsection, we apply the negativity measure for the investigation of the

DEM between two atoms. Among all entanglement measures, negativity surely is the best

known and most popular instrumentation to specify bipartite quantum correlations [83].

It is easily evaluated for arbitrary states of a composite system and so can be applied

to study entanglement in many different situations. Historically, this quantity, which is

based on the Peres-Horodecki criterion for the separability of a state [84, 85], was first

used by Zyczkowski et al [86] and subsequently introduced by Vidal and Werner as a new

entanglement measure [78]. The positive partial transpose (PPT) is a necessary and sufficient

condition for separability of 2×2 and 2×3-dimensional mixed states [84, 85], arbitrary d×d′
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pure state, all Gaussian states of 1 × n mode continuous variable systems [87, 88] and also

any state ρ which is supported on d× d′ systems (d ≤ d′) and with rank r(ρ) ≤ d′ [89], but

it is only sufficient, in general, for other systems. The negativity for a bipartite quantum

system with d × d′ (d ≤ d′)-dimensional Hilbert space HA ⊗ HB described by the density

matrix ρ̂, is given by (d ≤ d′)

N (ρ) =
||ρ̂TB ||1 − 1

d− 1
, (26)

where ρ̂TB is the partial transpose of the state ρ̂ with respect to subsystem B and ||M̂ ||1 =
Tr
√

M̂ †M̂ is the trace class norm of the operator M̂ , which reduces to the sum of the

absolute value of the eigenvalues of M̂ , when M̂ is Hermitian. The matrix ρ̂ is a positive

operator with trace one, i.e. Tr(ρ̂) = 1. Also, for the partial transpose of this matrix we have

Tr(ρ̂TB) = 1, too. Since the partial transpose of density operator might have the negative

eigenvalues, the trace norm of ρ̂TB can be written in the following form

||ρ̂TB ||1 =
∑

i

|µi| =
∑

i

µi − 2
∑

i

µneg
i = 1− 2

∑

i

µneg
i , (27)

where µi and µ
neg
i correspond to the positive and negative eigenvalues of ρ̂TB , respectively.

Here, we are going to evaluate the DEM between two three-level atoms ((3×3)-dimensional

Hilbert space) in the considered systems.

In Fig. 3, we have plotted the time evolution of the negativity as a function of the dimen-

sionless time gt for the same parameters as in Fig. 2. One can see from this figure that the

temporal behavior of the negativity in various conditions represents irregular oscillations

between minima and maxima values. Frame 1 of this figure shows the DEM between two

V -type three-level atoms with and without the external classical field. According to these

figures, it may be seen that by increasing the amplitude of the external classical field, the

maxima values of negativity are revealed with time delay. For two Ξ-type three-level atoms,

the outstanding effect of the classical field is decrement the sustainment time of the maxima

values of the negativity. The same behavior can be seen in frame 3 for two Λ-type three-

level atoms. Finally, by considering the presented results depicted in Fig. 3, it is found that

the DEM between Ξ-type three-level atoms in the presence or absence of the classical field

is greater than two other configurations. Also, for different types of three-level atoms the

negativity can be managed by the driving external classical field. On the other hand, the

addition of the classical field causes a slight increase in the maximum values of the DEM

between two atoms.
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V. PHOTON STATISTICS: THE MANDEL PARAMETER

Sub-Poissonian statistics is a striking feature of nonclassical states. To investigate the

statistical properties of any system the Mandel parameter is a suitable measure [90]. This

parameter has been defined as the following form

Q(t) =
〈n2〉 − 〈n〉2

〈n〉 − 1. (28)

This quantity is positive, zero and negative when the statistics is super-Poissonian, Poisso-

nian and sub-Poissonian, respectively. The sub-Poissonian statistics is a sufficient but not

necessary condition for nonclassicality of the field [91]. For our considered systems we have:

〈n〉 = 〈ψ(t)|â†â|ψ(t)〉 = 〈ψ2(t)|D̂(γ)â†âD̂†(γ)|ψ2(t)〉

= 〈ψ2(t)|(â† − γ)(â− γ)|ψ2(t)〉 = γ2 + 〈ψ2(t)|â†â|ψ2(t)〉

− γ(〈ψ2(t)|â|ψ2(t)〉+ 〈ψ2(t)|â†|ψ2(t)〉), (29)

〈n2〉 = 〈ψ(t)|(â†â)2|ψ(t)〉 = 〈n〉+ 〈ψ2(t)|(â† − γ)2(â− γ)2|ψ2(t)〉. (30)

To visualize the effect of the external classical field on the photon statistics for the different

three configurations, we have plotted the Mandel parameter against the scaled time gt for

different values of the coupling parameter ratio γ in Fig. 4. In the absence of classical field,

the oscillations of the Mandel parameter in three configurations show collapse and revival

phenomena as would be expected. Also, in these cases the Mandel parameter varies between

positive and negative values, which means that the photons display super- or sub-Poissonian

statistics for different intervals of times, alternatively. Due to the presence of external field,

we observe that the Mandel parameter possesses a periodic behavior in the positive region

at the most of times. This means that in these times, the entire atom-field state of the

considered systems has a super-Poissonian statistics. Altogether, in the presence of classical

field and only in the beginnings time of the interaction the field has sub-Poissonian statistics.

Increasing the value of the classical field coupling parameter leads to the decrease in the time

average of the sub-Poissonian statistics. Finally, it is to be noted that the negative value of

Mandel parameter in Ξ-type is greater than its counterparts in both V - and Λ-types.
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VI. NORMAL SQUEEZING OF THE FIELD

In the present section we focus on the squeezing phenomenon. This parameter is described

by decreasing the quantum fluctuations in one of the field quadratures with the price of an

increase in the corresponding conjugate quadrature, such that the Heisenberg uncertainty

principle is not violated. The squeezed light has attractive applications in optical commu-

nication networks and gravitational wave detection [92, 93]. The squeezing parameter has

been defined in various ways such as normal squeezing, amplitude-squared squeezing [94],

higher-order squeezing [95] and principal squeezing [96]. However, in the present section we

pay attention to the normal squeezing.

To investigate the normal squeezing of the field, we introduce two quadrature field oper-

ators x̂ = (â + â†)/2 and ŷ = (â − â†)/2i. The system then would possess squeezing if

one of the quadratures convinces the inequality 〈(∆x̂)2〉 < 0.25 or 〈(∆ŷ)2〉 < 0.25 where

〈(∆x̂i)2〉 = 〈x̂i2〉 − 〈x̂i〉2, xi = x and y. Equivalently, if we define Sx = 4〈(∆x̂)2〉 − 1 and

Sy = 4〈(∆ŷ)2〉 − 1, squeezing occurs in x̂ (ŷ) component if −1 < Sx < 0 (−1 < Sy < 0).

These parameters can be rewritten as follows:

Sx = 2〈â†â〉+ 2ℜ〈â2〉 − 4(ℜ〈â〉)2, (31)

Sy = 2〈â†â〉 − 2ℜ〈â2〉 − 4(ℑ〈â〉)2, (32)

where 〈â†â〉 has been previously defined in (29) and 〈âm〉 can be obtained in the following

form

〈âm〉 = 〈ψ(t)|âm|ψ(t)〉 = 〈ψ2(t)|(â− γ)m|ψ2(t)〉. (33)

Our results presented in Fig. 5 indicate the time evolution of the quadrature squeezing

parameters Sx and Sy against the scaled time gt for different types of three-level atoms as

well as various values of the coupling parameter ratio. We can see from this figure that

for all cases, the squeezing exists in the x quadrature and no squeezing is occurred in the

y quadrature. Meanwhile, squeezing arises in x quadrature only at the beginning of the

occurrence of the atom-field interaction. Furthermore, a comparison between frame (a) and

frames (b,c) of different configurations of three-level atoms shows that the amounts of this

nonclassical effect in x diminishes by increasing γ. Also, our conclusions represent that,

the squeezing in x component in the Ξ-configuration is stronger than for the other two

configurations.
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VII. CONCLUSION

Due to the importance of the three-level atoms as well as the presence of the driving

classical field in the atom-field interactions, in this paper, we have outlined two identical

three-level atoms (in V , Ξ and Λ configurations) interacting with a quantized single-mode

field assisted by an external classical field. It is shown that the introduced system can

be transformed to the usual form of the generalized JCM by using two appropriate unitary

transformations. Therefore, we could solve the dynamical problem and find the explicit form

of the entangled state vector of the three different considered atom-field systems analytically,

by considering the atoms initially in the higher exited state and the quantized field in the

coherent state. Next, at first, the quantum entanglement between the subsystems of the

generated states are computationally evaluated by using the approach of von Neumann

entropy (to study the DEM between two atoms and quantized field) and negativity (to

investigate the DEM between two atoms). Then, the quantum statistics and quadrature

squeezing of the obtained states have been numerically investigated. In each case, we studied

the effect of the external classical field on the mentioned physical quantities. The main

results of the paper are listed in what follows.

1. Generally, entering the classical field on the interaction together with increasing the

related parameter may lead to the shift of the maxima amounts of the field entropy

for two V - and Ξ-type three-level. Increasing the value of γ leads to the oscillatory

behaviour of the von Neumann entropy for Λ-type configuration.

2. Maximum values of the DEM between two atoms for Ξ-configuration are larger than

those for other two configurations. Also, the DEM between two atoms depend on the

driving classical field.

3. Since the rank of the reduced density operator of the atomic system containing two

Λ-type three-level atoms is three, it is deduced that the PPT is necessary and sufficient

condition for separability and in this case, the negativity fully captures the entangle-

ment of this system. It turns out that under conditions considered in this work, the

atom-atom entanglement generated in the Λ-type configuration is distillable.

4. The increase in the external classical field is associated with a slight increment in the

maximum values of the DEM between different subsystems.
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5. The complete (partial) collapse and revival, as purely quantum mechanical features,

are observed in Mandel parameter in the absence of the classical field. Also, in the

presence of classical field the quantized cavity mode is super-Poissonian after certain

interaction time.

6. The numerical results indicate that, no squeezing is seen in y component and squeezing

occurs in x quadrature in very short time intervals in the beginning of the interaction.

Also, it is obviously seen that the profundity of squeezing in these regions is decreased

by the increment of the amplitude of the classical field.

7. It is illustrated that the amount of considered entanglement criteria as well as quan-

tum statistics and squeezing can be tuned by applying the external classical field

appropriately via parameter γ. This, however, is more clear in quantum statistics and

squeezing as compared with entanglement criteria.

8. As a marginal result of the paper, we would like to state that, in the appropriate

conditions our proposal can be used for the generation of displacement number states.

At the end of this paper, we mention that this study can be accomplished by considering

spontaneous emissions and other decoherence processes. We hope to report this work in the

near future elsewhere.
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