Skip to main content
Log in

Purifying two-qubit entanglement in nonidentical decoherence by employing weak measurements

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a feasible scheme for purifying two-qubit entanglement in the presence of decoherence by employing weak measurements. As long as the entanglement parameter \(\alpha \) and the measurement strength \(p\) satisfy a certain condition, we can always achieve the purification without reference to the initial state. Furthermore, an arbitrary initial state can be directly purified into the maximally entangled state by setting measurement strength \(p=1-\frac{\left| \alpha \right| }{\sqrt{1-\left| \alpha \right| ^{2}}}\). The success probability of our scheme not only depends on measurement strength, but also closely links to the initial state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  2. Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process 13, 1907–1916 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Boschi, D., Branca, S., Martini, F., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Hu, T.T., Xue, K., Sun, C.F.: Quantum teleportation and dense coding via topological basis. Quantum Inf. Process 12, 3369–3381 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Harrow, A., Hayden, P., Leung, D.: Superdense coding of quantum states. Phys. Rev. Lett. 92, 187901 (2004)

    Article  ADS  Google Scholar 

  7. Huang, P., Zhu, J., Qi, X.X.: Different dynamics of classical and quantum correlations under decoherence. Quantum Inf. Process 11, 1845–1865 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Paz, J.P., Roncaglia, A.J.: Dynamics of the entanglement between two oscillators in the same environment. Phys. Rev. Lett. 100, 220401 (2008)

    Article  ADS  Google Scholar 

  9. Sen, A., Sarkar, D., Bhar, A.: Decoherence dynamics of measurement-induced nonlocality and comparison with geometric discord for two qubit systems. Quantum Inf. Process 12, 3007–3022 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Mazzola, L., Maniscalco, S., Piilo, J., Suominen, K.A., Garraway, B.M.: Sudden death and sudden birth of entanglement in common structured reservoirs. Phys. Rev. A 79, 042302 (2009)

    Article  ADS  Google Scholar 

  11. Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian Effects on the Dynamics of Entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  12. Shi, J.D., Wu, T., Song, X.K., Ye, L.: Multipartite concurrence for \(X\) states under decoherence. Quantum Inf. Process. 13, 1045–1056 (2014)

    Article  ADS  MATH  Google Scholar 

  13. Zwerger, M., Briegel, H.J., Dur, W.: Robustness of hashing protocols for entanglement purification. Phys. Rev. A 90, 012314 (2014)

    Article  ADS  Google Scholar 

  14. Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417 (2003)

    Article  ADS  Google Scholar 

  15. Zhu, M.Z., Ye, L.: Efficient entanglement purification via quantum communication bus. Quantum Inf. Process 13, 1397–1412 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  17. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)

    Article  ADS  Google Scholar 

  18. Linden, N., Massar, S., Popescu, S.: Purifying noisy entanglement requires collective measurements. Phys. Rev. Lett. 81, 3279 (1998)

    Article  ADS  Google Scholar 

  19. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)

    Article  ADS  Google Scholar 

  20. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)

    Article  Google Scholar 

  21. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309–16316 (2011)

    Article  ADS  Google Scholar 

  22. Sun, Q.Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  23. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  24. Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  25. Li, Y.L., Xiao, X.: Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf. Process 13, 3067–3077 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  27. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  28. Maziero, J., Werlang, T., Fanchini, F.F., Celeri, L.C., Serra, R.M.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)

    Article  ADS  Google Scholar 

  29. Salles, A., Melo, F.D., Almeida, M.P., Hor-Meyll, M., Walborn, S.P., Ribeiro, P.H.S., Davidovich, L.: Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)

    Article  ADS  Google Scholar 

  30. Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under Grant Nos. 11074002 and 61275119, by the Doctoral Foundation of the Ministry of Education of China under Grant No. 20103401110003 and also by the Personal Development Foundation of Anhui Province (2008Z018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, JD., Xu, S., Ma, WC. et al. Purifying two-qubit entanglement in nonidentical decoherence by employing weak measurements. Quantum Inf Process 14, 1387–1397 (2015). https://doi.org/10.1007/s11128-015-0918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0918-z

Keywords

Navigation