Skip to main content
Log in

Image segmentation on a quantum computer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we address the field of quantum information processing and analyze the prospects of applying quantum computation concepts to image processing tasks. Specifically, we discuss the development of a quantum version for the image segmentation operation. This is an important technique that comes up in many image processing applications. We consider the threshold-based segmentation and show that a quantum circuit to achieve this operation can be built using a quantum oracle that implements the thresholding function. We discuss the circuit implementation of the oracle operator and provide examples of segmenting synthetic and real images. The main advantage of the quantum version for image segmentation over the classical approach is its speedup and is provided by the special properties of quantum information processing: superposition of states and inherent parallelism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lloyd, S.: A potentially realizable quantum computer. Science 126, 1569–1571 (1993)

    Article  ADS  Google Scholar 

  2. Vendersypen, L., Steffen, M., Breyta, G., Yannoni, C., Cleve, R., Chuang, I.: 5 qubit 215 hz quantum processor. In: Proceedings of 12th Annual Hot Chips Conference, Palo Alto, Stanford University (2000)

  3. Ohlsson, N., Mohan, R., Kroell, S.: Quantum computer hardware based on rare-earth-ion-doped inorganic crystals. Opt. Commun. 201(1–3), 71–77 (2002)

    Article  ADS  Google Scholar 

  4. Fei, X., JiangFeng, D., MingJun, S., Xianyi, Z., Rongdian, H., Jihui, W.: Realization of Fredkin gate by three transition pulses in NMR quantum information processor. Chin. Phys. Lett. 19(8), 1048 (2002)

    Article  Google Scholar 

  5. Longdell, J., Sellars, M., Manson, N.: Demonstration of conditional quantum phase shift between ions in a solid. Phys. Rev. Lett. 93(13), 130503 (2004)

    Article  ADS  Google Scholar 

  6. Politi, A., Matthews, J., O’Brien, J.: Shor’s quantum factoring algorithm on a photonic chip. Science 325(5945), 1221 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. DiCarlo, L., Chow, J., Gambetta, J., Bishop, L.S., Johnson, B., Schuster, D., Majer, J., Blais, A., Frunzio, L., Girvin, S., Schoelkopf, R.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460(7252), 240–244 (2009)

    Article  ADS  Google Scholar 

  8. Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)

    Article  ADS  Google Scholar 

  9. Xu, N., Zhu, J., Lu, D., Zhou, X., Peng, X., Du, J.: Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108, 130501 (2012)

    Article  ADS  Google Scholar 

  10. van der Sar, T., Wang, Z.H., Blok, M.S., Bernien, H., Taminiau, T.H., Toyli, D.M., Lidar, D.A., Awschalom, D.D., Hanson, R., Dobrovitski, V.V.: Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 7392, 82–86 (2012)

    Google Scholar 

  11. Pla, J.J., Tan, K.Y., Dehollain, J.P., Lim, W.H., Morton, J.J.L., Jamieson, D.N., Dzurak, A.S., Morello, A.: A single-atom electron spin qubit in silicon. Nature 489(7417), 541–545 (2012)

    Article  ADS  Google Scholar 

  12. Fijany, A., Williams, C.: Quantum wavelet transform: fast algorithm and complete circuits (1998). arXiv:quant-ph/9809004

  13. Klappenecker, A., Roetteler, M.: Discrete cosine transforms on quantum computers (2001). arXiv:quant-ph/0111038

  14. Tseng, C.C., Hwang, T.M.: Quantum circuit design of \(8\times 8\) discrete cosine transform using its fast computation flow graph. In: IEEE International Symposium on Circuits and Systems, 2005. ISCAS 2005, vol. 1, pp. 828–831, May 2005

  15. Venegas-Andraca, S., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE 2003 Conference on Quantum Information and Computation, pp. 137–147 (2003)

  16. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, H.S., Qingxin, Z., Lan, S., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q., Compare, A.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)

  19. Le, P., Iliyasu, A., Dong, F., Hirota, K.: A flexible representation and invertible transformations for images on quantum computers. In: New Advances in Intelligent Signal Processing, vol. 372 of Studies in Computational Intelligence, pp. 179–202. Springer, Berlin (2011)

  20. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412, 1406–1418 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Efficient color transformations on quantum images. JACIII 15, 698–706 (2011)

    Google Scholar 

  22. Yan, F., Le, P.Q., Iliyasu, A.M., Sun, B., Garcia, J.A., Dong, F., Hirota, K.: Assessing the similarity of quantum images based on probability measurements. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–6, June 2012

  23. Zhou, R.-G., Wu, Q., Zhang, M.-Q., Shen, C.-Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  24. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Iliyasu, A.M., Le, P.Q., Yan, F., Sun, B., Garcia, J.A.S., Dong, F., Hirota, K.: A two-tier scheme for greyscale quantum image watermarking and recovery. Int. J. Innov. Comput. Appl. 5, 85–101 (2013)

    Article  Google Scholar 

  26. Zhang, W.-W., Gao, F., Liu, B., Wen, Q.-Y., Chen, H.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12, 793–803 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Zhang, W.-W., Gao, F., Liu, B., Jia, H.-Y., Wen, Q.-Y., Chen, H.: A quantum watermark protocol. Int. J. Theor. Phys. 52(2), 504–513 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: A framework for representing and producing movies on quantum computers. Int. J. Quantum Inf. 09(06), 1459–1497 (2011)

    Article  Google Scholar 

  29. Sun, B., Le, P., Iliyasu, A., Yan, F., Garcia, J., Dong, F., Hirota, K.: A multi-channel representation for images on quantum computers using the RGB color space. In: 2011 IEEE 7th International Symposium on Intelligent Signal Processing (WISP), pp. 1–6, Sept 2011

  30. Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)

    Google Scholar 

  31. Iliyasu, A.M.: Towards realising secure and efficient image and video processing applications on quantum computers. Entropy 15(8), 2874–2974 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. Caraiman, S., Manta, V.: Image processing using quantum computing. In: v System Theory, Control and Computing (ICSTCC), pp. 1–6, Oct 2012

  33. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Caraiman, S., Manta, V.: Quantum image filtering in the frequency domain. Adv. Electr. Comput. Eng. 13(3), 77–84 (2013)

    Article  Google Scholar 

  35. Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  36. Zhang, Y., Lu, K., hui Gao, Y., Wang, M.: A quantum algorithm of constructing image histogram. World Acad. Sci. Eng. Technol. 7(5), 610–613 (2013)

    Google Scholar 

  37. Caraiman, S., Manta, V.: Image representation and processing using ternary quantum computing. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) Adaptive and Natural Computing Algorithms. Lecture Notes in Computer Science, vol. 7824, pp. 366–375. Springer, Berlin (2013)

  38. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Venegas-Andraca, S., Ball, J.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  40. Latorre, J.: Image compression and entanglement (2005). arXiv:quant-ph/0510031

  41. Li, H.S., Zhu, Q., Zhou, R.G., Song, L., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Li, H.S., Zhu, Q., Zhou, R.G., Li, M.C., Song, I., Ian, H.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. 273, 212–232 (2014)

    Article  Google Scholar 

  43. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, STOC ’96, New York, NY, USA, pp. 212–219. ACM (1996)

  44. Lanzagorta, M., Uhlmann, J.: Hybrid quantum computing: semicloning for general database retrieval. In: Proceedings of SPIE 2005: Quantum Information and Quantum Computation Conference, vol. 5815, pp. 78–86 (2005)

  45. Beach, G., Lomont, C., Cohen, C.: Quantum image processing (QuIP). In: Proceedings of 32nd Workshop on Applied Imagery Pattern Recognition, pp. 39–44, Oct 2003

  46. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Series on Information and the Natural Sciences. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  47. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 439(1907), 553–558 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Boneh, A., Hofri, M.: The coupon-collector problem revisited—a survey of engineering problems and computational methods. Stoch. Models 13(1), 39–66 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  49. Leung, D.W.: Quantum computation by measurements. Int. J. Quantum Inf. 02(01), 33–43 (2004)

    Article  Google Scholar 

  50. Anders, J., Oi, D.K.L., Kashefi, E., Browne, D.E., Andersson, E.: Ancilla-driven universal quantum computation. Phys. Rev. A 82, 020301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  51. Oliveira, D., Ramos, R.: Quantum bit string comparator: circuits and applications. Quantum Comput. Comput. 7, 17–26 (2007)

    MathSciNet  Google Scholar 

  52. Talbi, H., Batouche, M., Draa, A.: A quantum-inspired evolutionary algorithm for multiobjective image segmentation. Int. J. Eng. Nat. Sci. 1(2), 109–114 (2007)

    Google Scholar 

  53. Zhou, C., Hu, Z., Wang, F., Fan, H., Shang, L.: Quantum collapsing median filter. In: 6th International Conference on Intelligent Computing, ICIC 2010, Changsha, China, Aug 18–21 2010. Proceedings, pp. 454–461 (2010)

  54. Fu, X., Ding, M., Zhou, C., Sun, Y.: Multi-threshold image segmentation with improved quantum-inspired genetic algorithm. In: Proceedings of SPIE 7495, MIPPR 2009: Automatic Target Recognition and Image Analysis, 749518 (2009)

  55. Zhang, J., Li, H., Tang, Z., Lu, Q., Zheng, X., Zhou, J.: An improved quantum-inspired genetic algorithm for image multilevel thresholding segmentation. Math. Probl. Eng. 2014, 295402 (2014)

Download references

Acknowledgments

The work in this paper was partially supported by the project H2020 643636 financed by the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Caraiman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caraiman, S., Manta, V.I. Image segmentation on a quantum computer. Quantum Inf Process 14, 1693–1715 (2015). https://doi.org/10.1007/s11128-015-0932-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0932-1

Keywords

Navigation