Skip to main content
Log in

High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum entanglement is the key resource in quantum information processing, especially in quantum communication network. However, affected by the environment noise, the maximally entangled states usually collapse into nonmaximally entangled ones or even mixed states. Here we present two high-efficiency schemes to complete the entanglement concentration of nonlocal two-atom systems. Our first scheme is used to concentrate the nonlocal atomic systems in the partially entangled states with known parameters, and it has the optimal success probability. The second scheme is used to concentrate the entanglement of the nonlocal two-atom systems in the partially entangled states with unknown parameters. Compared with the other schemes for the entanglement concentration of atomic systems, our two protocols are more efficient and practical. They require only an ancillary single photon to judge whether they succeed or not, and they work in a heralded way with detection inefficiency and absence of sophisticated single-photon detectors in practical applications. Moreover, they are insensitive to both the cavity decay and atomic spontaneous emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Liu, X.S., Long, G.L., Tong, D.M., Feng, L.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers. Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

  5. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  8. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  9. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  10. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  11. Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

    Article  ADS  Google Scholar 

  12. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  13. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  14. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  15. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  16. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

  17. Bose, S., Vderal, V., Knilight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 60 (1999)

    Article  Google Scholar 

  18. Shi, B.S., Jiang, Y.K., Guo, G.C.: Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62, 054301 (2000)

    Article  ADS  Google Scholar 

  19. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

  20. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

  21. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062305 (2008)

    Article  ADS  Google Scholar 

  22. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  23. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

  24. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  25. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22, 6547–6561 (2014)

    Article  ADS  Google Scholar 

  26. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  27. Gu, B.: Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics. J. Opt. Soc. Am. B 29, 1685–1689 (2012)

    Article  ADS  Google Scholar 

  28. Wang, H.F., Zhang, S., Yeon, K.H.: Linear optical scheme for entanglement concentration of two partially entangled three photon W states. Eur. Phys. J. D 56, 271–275 (2010)

    Article  ADS  Google Scholar 

  29. Wang, H.F., Zhang, S., Yeon, K.H.: Linear-optics-based entanglement concentration of unknown partially entangled threephoton W states. J. Opt. Soc. Am. B 27, 2159–2164 (2010)

    Article  ADS  Google Scholar 

  30. Xiong, W., Ye, L.: Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 28, 2030–2037 (2011)

    Article  ADS  Google Scholar 

  31. Sun, L.L., Wang, H.F., Zhang, S., Yeon, K.H.: Entanglement concentration of partially entangled threephoton W states with weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 630–634 (2012)

    Article  ADS  Google Scholar 

  32. Gu, B., Quan, D.H., Xiao, S.R.: Multi-photon entanglement concentration protocol for partially entangled W states with projection measurement. Int. J. Theor. Phys. 51, 2966–2973 (2012)

    Article  MATH  Google Scholar 

  33. Wang, T.J., Long, G.L.: Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics. J. Opt. Soc. Am. B 30, 1069–1076 (2013)

    Article  ADS  Google Scholar 

  34. Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Inf. Process. 12, 2087–2101 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Sheng, Y.B., Zhou, L.: Efficient W-state entanglement concentration using quantum-dot and optical microcavities. J. Opt. Soc. Am. B 30, 678–686 (2013)

    Article  ADS  Google Scholar 

  36. Sheng, Y.B., Zhou, L.: Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15, 1776–1820 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Xu, T.T., Xiong, W., Ye, L.: Concentrating arbitrary four-photon less-entangled cluster state by single photons. Mod. Phys. Lett. B 26, 1250214 (2012)

    Article  ADS  Google Scholar 

  38. Si, B., Su, S.L., Sun, L.L., Cheng, L.Y., Wang, H.F., Zhang, S.: Efficient three-step entanglement concentration for an arbitrary four-photon cluster state. Chin. Phys. B 22, 030305 (2013)

    Article  ADS  Google Scholar 

  39. Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf. Process. 12, 1885–1895 (2013)

    Article  ADS  MATH  Google Scholar 

  40. Zhao, S.Y., Liu, J., Zhou, L., Sheng, Y.B.: Two-step entanglement concentration for arbitrary electronic cluster state. Quantum Inf. Process. 12, 3633–3647 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Du, F.F., Deng, F.G.: Heralded entanglement concentration for photon systems with linear-optical elements. Sci. China-Phys. Mech. Astron. 58, 040303 (2015)

  42. Yang, M., Zhao, Y., Song, W., Cao, Z.L.: Entanglement concentration for unknown atomic entangled states via entanglement swapping. Phys. Rev. A 71, 044302 (2005)

    Article  ADS  Google Scholar 

  43. Cao, Z.L., Zhang, L.H., Yang, M.: Concentration for unknown atomic entangled states via cavity decay. Phys. Rev. A 73, 014303 (2006)

  44. Oyden, C.D., Paternostro, M., Kim, M.S.: Concentration and purification of entanglement for qubit systems with ancillary cavity field. Phys. Rev. A 75, 042325 (2007)

  45. Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)

  46. Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)

  47. Peng, Z.H., Zou, J., Liu, X.J., Xiao, Y.J., Kuang, L.M.: Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys. Rev. A 86, 034305 (2012)

    Article  ADS  Google Scholar 

  48. Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input–output process in low-Q cavity QED regime. Opt. Express 21, 4093 (2013)

    Article  ADS  Google Scholar 

  49. Li, T., Yang, G.J., Deng, F.G.: Entanglement distillation for quantum communication network with atomic-ensemble memories. Opt. Express 22, 23897–23911 (2014)

    Article  ADS  Google Scholar 

  50. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  51. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Osnaghi, S., Bertet, P., Auffeves, A., Maioli, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902 (2001)

    Article  ADS  Google Scholar 

  53. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

  54. Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with on trapped atom. Nature (London) 436, 87 (2005)

    Article  ADS  Google Scholar 

  55. Cho, J., Lee, H.W.: Generation of atomic atomic cluster states through the cavity input–output process. Phys. Rev. Lett. 95, 160501 (2005)

  56. Beugnon, J., Jones, M.P.A., Dingjan, J., Darqui, B., Messin, G., Browaeys, A., Grangier, P.: Quantum interference between two single photons emitted by independently trapped atoms. Nature (London) 440, 779–782 (2006)

    Article  ADS  Google Scholar 

  57. Hijlkema, H., Weber, B., Specht, H.P., Webster, S.C., Kuhn, A., Gerhard, R.: A single-photon server with just one atom. Nat. Phys. 3, 253–255 (2007)

    Article  Google Scholar 

  58. Wilk, T., Webster, S.C., Kuhn, A., Rempe, G.: Single-atom single-photon quantum interface. Science 317, 488–490 (2007)

    Article  ADS  Google Scholar 

  59. Hu, C.Y., Young, A., Obrien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    Article  ADS  Google Scholar 

  60. Reiserer, A., Ritter, S., Rempe, G.: Nondestructive detection of an optical photon. Science 342, 1349 (2013)

    Article  ADS  Google Scholar 

  61. Tiecke, T.G., Thompson, J.D., de Leon, N.P., Liu, L.R., Vuletic, V., Lukin, M.D.: Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014)

    Article  ADS  Google Scholar 

  62. An, J.H., Feng, M., Oh, C.H.: Quantum-information processing with a single photon by an input–output process with respect to low-Q cavities. Phys. Rev. A 79, 032303 (2009)

    Article  ADS  Google Scholar 

  63. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)

    Article  ADS  Google Scholar 

  64. Dayan, B., Parkins, A.S., Takao, Aoki, Ostby, E.P., Vahala, K.J., Kimble, H.J.: A photon turnstile dynamically regulated by one atom. Science 319, 1062 (2008)

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11174039 and 11474026, NECT-11-0031, and the Open Foundation of State key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) under Grant No. SKLNST- 2013-1-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Guo Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, GY., Li, T. & Deng, FG. High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quantum Inf Process 14, 1305–1320 (2015). https://doi.org/10.1007/s11128-015-0938-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0938-8

Keywords

Navigation