Skip to main content
Log in

Thermal entanglement of a coupled electronic spins system: interplay between an external magnetic field, nuclear field and spin–orbit interaction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We have studied the thermal entanglement as a function of the temperature for a two-qubits Heisenberg spins system; we have included Dzyaloshinskii–Moriya interaction (DM), an external magnetic field (EMF) and hyperfine interaction due to the nuclear field of the surrounding nuclei. A critical value for the EMF was found, around \(B^{(c)}_{\mathrm{ext},z} \sim 39\) mT, which characterizes two regimes of behavior of the thermal entanglement. Our results show that the DM term acts as a facilitator for the entanglement because it prolongs the nonzero thermal entanglement for larger temperatures. We found that the concurrence as a function of the temperature has a local maximum, for values of the magnetic field larger than the critical field. We also show that the critical temperature \(T_\mathrm{c}\) follows a polynomial growth as a function of the DM term, with characteristic behavior \(T_{\mathrm{c}} \sim \beta _{0}^{2}\), and the hyperfine field implies a critical temperature as a function of the field variance, \(\sigma \) of the form \(T_{\mathrm{c}} \sim \sigma ^{2}\). We show that in this system, the entanglement measure by the concurrence and the one-spin polarization observable exhibit opposite behavior, providing a method to obtain the entanglement from the measurement of an observable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Loss, D., DiVicenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  6. Peta, J.R., et al.: Double quantum dot as a quantum bit. Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  7. Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393, 133 (1998)

    Article  ADS  Google Scholar 

  8. Imamoglu, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999)

    Article  ADS  Google Scholar 

  9. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  10. Wang, X.: Entanglement in the quantum Heisenberg XY model. Phys. Rev. A 64, 012313 (2001)

    Article  ADS  Google Scholar 

  11. Arnesen, M.C., et al.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  12. Yi, X.X., et al.: Entanglement induced in spin-1/2 particles by a spin chain near its critical points. Phys. Rev. A 74, 054102 (2006)

    Article  ADS  Google Scholar 

  13. Porras, D., Cirac, J.I.: Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004)

    Article  ADS  Google Scholar 

  14. Wang, F., et al.: Anisotropy and magnetic field effects on entanglement of a two-spin (1/2, 1) mixed-spin Heisenberg XY chain. Commun. Theor. Phys. 50, 341 (2008)

    Article  ADS  Google Scholar 

  15. Wang, X.: Effects of anisotropy on thermal entanglement. Phys. Lett. A 281, 101 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Zhang, G.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski–Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75, 034304 (2007)

    Article  ADS  Google Scholar 

  17. Ma, X.S.: Thermal entanglement of a two-qutrit XX spin chain with Dzialoshinski–Moriya interaction. Opt. Commun. 281, 484 (2008)

    Article  ADS  Google Scholar 

  18. Kheirandish, F., et al.: Effect of spin–orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field. Phys. Rev. A 77, 042309 (2009)

    Article  ADS  Google Scholar 

  19. Akyüz, C., et al.: Thermal entanglement of a two-qutrit Ising system with Dzialoshinski–Moriya interaction. Opt. Commun. 281, 5271 (2008)

    Article  ADS  Google Scholar 

  20. li, D.: Thermal entanglement in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii–Moriya interaction. J. Phys.: Condens. Matter 20, 325229 (2008)

    Google Scholar 

  21. Gunlycke, D., et al.: Thermal concurrence mixing in a one-dimensional Ising model. Phys. Rev. A 64, 042302 (2001)

    Article  ADS  Google Scholar 

  22. Kamta, G.L., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)

    Article  ADS  Google Scholar 

  23. Zhou, L., et al.: Enhanced thermal entanglement in an anisotropic Heisenberg XYZ chain. Phys. Rev. A 68, 024301 (2003)

    Article  ADS  Google Scholar 

  24. Sun, Y., et al.: Thermal entanglement in the two-qubit Heisenberg XY model under a nonuniform external magnetic field. Phys. Rev. A 68, 044301 (2003)

    Article  ADS  Google Scholar 

  25. Asoudeh, M., Karimipour, V.: Thermal entanglement of spins in the Heisenberg model at low temperatures. Phys. Rev. A 70, 052307 (2004)

    Article  ADS  Google Scholar 

  26. Asoudeh, M., Karimipour, V.: Thermal entanglement of spins in an inhomogeneous magnetic field. Phys. Rev. A 71, 022308 (2005)

    Article  ADS  Google Scholar 

  27. Chruscinskim, D., Pytel, J.: Constructing optimal entanglement witnesses. II. Witnessing entanglement in 4N\(\times \)4N systems. Phys. Rev. A 82, 052310 (2010)

    Article  ADS  Google Scholar 

  28. Bennet, A., et al.: Experimental semi-device-independent certification of entangled measurements. Phys. Rev. Lett. 113, 080405 (2014)

    Article  ADS  Google Scholar 

  29. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)

    Article  ADS  Google Scholar 

  30. Zyczkowski, K., Horodecki, P.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  31. Guerrero, R.J., Rojas, F.: Effect of the Dzyaloshinski–Moriya term in the quantum (SWAP)a gate produced with exchange coupling. Phys. Rev. A 77, 012331 (2007)

    Article  ADS  Google Scholar 

  32. Elzerman, J.M., et al.: Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431 (2006)

    Article  ADS  Google Scholar 

  33. Merkulov, I.A., et al.: Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002)

    Article  ADS  Google Scholar 

  34. Khaetskii, A.V., et al.: Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002)

    Article  ADS  Google Scholar 

  35. Khaetskii, A.V., et al.: Electron spin evolution induced by interaction with nuclei in a quantum dot. Phys. Rev. Lett. 67, 195329 (2003)

    ADS  Google Scholar 

  36. Coish, W.A., Loss, D.: Hyperfine interaction in a quantum dot: non-Markovian electron spin dynamics. Phys. Rev. B 70, 195340 (2004)

    Article  ADS  Google Scholar 

  37. Johnson, A.C., et al.: Triplet-singlet spin relaxation via nuclei in a double quantum dot. Nature 435, 925 (2005)

    Article  ADS  Google Scholar 

  38. Coish, W.A., Loss, D.: Singlet-triplet decoherence due to nuclear spins in a double quantum dot. Phys. Rev. B 72, 125337 (2005)

    Article  ADS  Google Scholar 

  39. Klauser, D., et al.: Nuclear spin state narrowing via gate-controlled Rabi oscillations in a double quantum dot. Phys. Rev. B 73, 205302 (2006)

    Article  ADS  Google Scholar 

  40. Chuntia, S., et al.: Detection and measurement of the Dzyaloshinskii–Moriya interaction in double quantum dot system. Phys. Rev. B 73, 241304 (2006)

    Article  ADS  Google Scholar 

  41. Taylor, J.M., et al.: Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B 76, 035315 (2007)

    Article  ADS  Google Scholar 

  42. Golovach, V.N., et al.: Spin relaxation at the singlet-triplet crossing in a quantum dot. Phys. Rev. B 77, 045328 (2008)

    Article  ADS  Google Scholar 

  43. Petta, J.R., et al.: Dynamic nuclear polarization with single electron spins. Phys. Rev. Lett. 100, 067601 (2008)

    Article  ADS  Google Scholar 

  44. Erlingsson, S.I., et al.: Radiatively limited dephasing in InAs quantum dots. Phys. Rev. B 70, 033301 (2005)

    Article  ADS  Google Scholar 

  45. Erlingsson, S.I., Nazarov, Y.V.: Evolution of localized electron spin in a nuclear spin environment. Phys. Rev. B 70, 205327 (2004)

    Article  ADS  Google Scholar 

  46. Dzyaloshinskii, I.: A thermodynamics theory of “weak” ferromagnetirm of antiferromagnetics; anisotropic superexchange interaction and weak ferromagnetism. J. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  47. Moriya, T.: Anisotropic exchange interaction of localized conduction-band electrons in semiconductors. Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  48. Kavokin, K.V.: Anisotropic exchange of localized conduction-band electrons in semiconductor. Phys. Rev. B 64, 075305 (2001)

    Article  ADS  Google Scholar 

  49. Abragam, A.: The Principles of Nuclear Megnetism. Oxford University Press, Oxford (1961)

    Google Scholar 

  50. Abragam, A., Bleaney, B.: Entanglement of Formation of an Arbitrary State of Two Qubits. Dover, New York (1986)

    Google Scholar 

  51. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thanks DGAPA-UNAM for support with the Project IN112012 and R.G. thanks CONACYT and CICESE for financial aid with a PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto J. Guerrero M..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero M., R.J., Rojas, F. Thermal entanglement of a coupled electronic spins system: interplay between an external magnetic field, nuclear field and spin–orbit interaction. Quantum Inf Process 14, 1973–1996 (2015). https://doi.org/10.1007/s11128-015-0946-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0946-8

Keywords

Navigation