Skip to main content

Advertisement

Log in

Efficiency of quantum energy teleportation within spin-\(\frac{1}{2}\) particle pairs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A protocol for quantum energy teleportation (QET) is known for a so-called minimal spin-\(\frac{1}{2}\) particle pair model. We extend this protocol to explicitly admit quantum weak measurements at its first stage. The extended protocol is applied beyond the minimal model to spin-\(\frac{1}{2}\) particle pairs whose Hamiltonians are of a general class characterized by orthogonal pairs of entangled eigenstates. The energy transfer efficiency of the extended QET protocol is derived for this setting, and we show that weaker measurement yields greater efficiency. In the minimal particle pair model, for example, the efficiency can be doubled by this means. We also show that the QET protocol’s transfer efficiency never exceeds 100 %, supporting the understanding that quantum energy teleportation is, indeed, an energy transfer protocol, rather than a protocol for remotely catalyzing local extraction of system energy already present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Hotta, M.: A protocol for quantum energy distribution. Phys. Lett. A 372, 5671–5676 (2008)

    Article  ADS  MATH  Google Scholar 

  3. Hotta, M.: Quantum measurement information as a key to energy extraction from local vacuums. Phys. Rev. D 78, 045006 (2008)

    Article  ADS  Google Scholar 

  4. Hotta, M.: Quantum energy teleportation in spin chain systems. J. Phys. Soc. Jpn. 78, 034001 (2009)

    Article  ADS  Google Scholar 

  5. Yusa, G., Izumida, W., Hotta, M.: Quantum energy teleportation in a quantum Hall system. Phys. Rev. A 84, 032336 (2011)

    Article  ADS  Google Scholar 

  6. Pusz, W., Woronowicz, S.L.: Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  7. Frey, M., Gerlack, K., Hotta, M.: Quantum energy teleportation between Gibbs particles in a Gibbs state. J. Phys. A 46, 455304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed X states. Quantum Inform. Comput. 7(5), 459–468 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Fano, U.: Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys. 29, 74 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  11. Aharonov, Y., Cohen, E., Elitzur, A.C.: Foundations and applications of weak quantum measurements. Phys. Rev. A 89(5), 052105 (2014)

    Article  ADS  Google Scholar 

  12. Tamir, B., Cohen, E.: Introduction to weak measurements and weak values. Quanta 2(1), 7–17 (2013)

    Article  MathSciNet  Google Scholar 

  13. Oreshkov, O., Brun, T.A.: Weak measurements are universal. Phys. Rev. Lett. 95(11), 110409 (2005)

    Article  ADS  Google Scholar 

  14. Doherty, A.C., Jacobs, K., Jungman, G.: Information, disturbance, and Hamiltonian quantum feedback control. Phys. Rev. A 63(6), 062306 (2001)

    Article  ADS  Google Scholar 

  15. Frey, M., Funo, K., Hotta, M.: Strong local passivity in finite quantum systems. Phys. Rev. E 90, 012127 (2014)

    Article  ADS  Google Scholar 

  16. Lenard, A.: Thermodynamical proof of the Gibbs formula for elementary quantum systems. J. Stat. Phys. 19(6), 575–586 (1978)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Frey.

Appendix

Appendix

We prove that the QET protocol’s efficiency \(\eta (\pi ,s)\) in (15) is a non-increasing function of the measurement strength \(s\) for any particle pair \(\mathcal{P}\) initially in the ground state \(\rho = |E_0\rangle \langle E_0|\) with parameters \(\pi \). The derivative of \(\eta (\pi ,s)\) in (16) is

$$\begin{aligned} \frac{\partial \eta (\pi ,s)}{\partial s} = - \frac{\tilde{s}^{\prime }}{\tilde{s}^2 P_3}\frac{L-R}{\sqrt{s^2 m^2 P_1+(P_2+\tilde{s} Q)^2}} \end{aligned}$$
(34)

where

$$\begin{aligned} L = \tilde{s} m^2 P_1+P_2(P_2 +\tilde{s} Q), \quad R = P_2\sqrt{s^2 P_1+(P_2+\tilde{s} Q)^2} \end{aligned}$$
(35)

with \(P_1,P_2,P_3\) and \(Q\) given as in (17), and \(\tilde{s}^{\prime }=s/\sqrt{1-s^2} \ge 0\). We have \(E_0 \le E_1 \le E_2 \le E_3\), so

$$\begin{aligned} P_2+\tilde{s} Q= & {} \left( \frac{E_{10}}{2} + \frac{E_{21}}{4}(2-\tilde{m}) \right) + \tilde{s} \frac{E_{32}-E_{10}}{4} \nonumber \\= & {} (2-\tilde{s})\frac{E_{10}}{4}+(2-\tilde{m})\frac{E_{21}}{4}+\tilde{s} \frac{E_{32}}{4} \nonumber \\\ge & {} 0. \end{aligned}$$

Therefore, \(L \ge 0\) in (35), and the derivative of \(\eta (\pi ,s)\) in (34) is non-positive if and only if \(L^2 \ge R^2\). So consider

$$\begin{aligned} L^2-R^2= & {} \left( \tilde{s} m^2 P_1+P_2^2 +\tilde{s} P_2 Q \right) ^2 - P_2^2 \left( s^2 m^2 P_1+(P_2+\tilde{s} Q)^2 \right) \nonumber \\= & {} \tilde{s}^2 m^4 P_1^2+2\tilde{s} P_1 P_2 (P_2+\tilde{s} Q) - s^2 P_1 P_2^2 \nonumber \\= & {} m^2 P_1 \left( \tilde{s}^2 m^2 P_1+(2\tilde{s} -s^2) P_2^2 + 2\tilde{s}^2 P_2 Q \right) \nonumber \\= & {} \tilde{s}^2 m^2 P_1 \left( m^2 P_1+P_2(P_2+2Q) \right) . \end{aligned}$$
(36)

In (36), we have

$$\begin{aligned} P_2+2 Q= & {} \left( \frac{E_{10}}{2} + \frac{E_{21}}{4}(2-\tilde{m}) \right) + 2 \frac{E_{32}-E_{10}}{4} \nonumber \\= & {} (2-\tilde{m})\frac{E_{21}}{4}+ 2\frac{E_{32}}{4} \nonumber \\\ge & {} 0. \end{aligned}$$

Therefore, \(L^2 - R^2 \ge 0\) in (36), so the derivative in (34) is non-positive. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frey, M.R. Efficiency of quantum energy teleportation within spin-\(\frac{1}{2}\) particle pairs. Quantum Inf Process 15, 1103–1116 (2016). https://doi.org/10.1007/s11128-015-0953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0953-9

Keywords

Navigation