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Diagrammatic Approach to Quantum Search
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Abstract We introduce a simple diagrammatic approach for estimating how
a randomly walking quantum particle searches on a graph in continuous-time,
which involves sketching small weighted graphs with self-loops and considering
degenerate perturbation theory’s effects on them. Using this method, we give
the first example of degenerate perturbation theory solving search on a graph
whose evolution occurs in a subspace whose dimension grows with N .
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1 Introduction

Degenerate perturbation theory is a “textbook tool” for quantum mechanics,
famously used to derive the spectra of atoms in the presence of an external
electric field (i.e., the Stark effect) [1]. Recently, we showed that it can also be
used to analyze quantum computing algorithms, specifically search on graphs
by a randomly walking quantum particle evolving by Schrödinger’s equation
[2]. Using it, we showed two intuitions to be false, that global symmetry and
high connectivity are not necessary for fast quantum search [2,3].

For example, consider search on the complete graph with N vertices, an
example of which is shown in Fig. 1. The vertices of the graph label compu-
tational basis states {|0〉, |1〉, . . . , |N − 1〉} of an N -dimensional Hilbert space.
Of these, we are looking for a particular “marked” vertex |a〉 using a randomly
walking quantum particle, whose state |ψ(t)〉 begins in an equal superposition
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Fig. 1 Complete graph with N = 6 vertices.

|s〉 of all the vertices:

|ψ(0)〉 = |s〉 =
1√
N

N−1∑
i=0

|i〉.

It searches by evolving by Schrödinger’s equation with Hamiltonian H =
−γL − |a〉〈a|, where γ is the jumping rate (i.e., amplitude per time), and
L = A−D is the graph Laplacian, which is composed of the adjacency matrix
(Aij = 1 if i and j are adjacent and 0 otherwise) and the diagonal degree ma-
trix (Djj = deg(j) and 0 otherwise) [4]. For a regular graph, D is proportional
to the identity matrix, so we can drop it by rezeroing the energy. Then the
search Hamiltonian is

H = −γA− |a〉〈a|. (1)

With this initial state and evolution, the non-marked vertices evolve iden-
tically by symmetry, as shown in Fig. 1. So we can group them together:

|b〉 =
1√
N − 1

∑
i 6=a

|i〉.

Then the system evolves in a two-dimensional subspace spanned by {|a〉, |b〉},
in which the Hamiltonian (1) is

H = −γ
( 1

γ

√
N − 1√

N − 1 N − 2

)
. (2)

One traditionally estimates how the search algorithm evolves on a general
graph by plotting the squared overlaps of the eigenstates of H with |s〉, |a〉,
and possibly other states [3,4]. This is shown for the complete graph in Fig. 2.
From this, when γ takes its critical value of γc = 1/N , the eigenstates of H
take the form |ψ0,1〉 ∝ |s〉 ± |a〉, so the system evolves from |s〉 to |a〉 in time
π/∆E.

To prove this and find the energy gap’s scaling with N , we use degener-
ate perturbation theory [2]. We begin by separating the Hamiltonian (2) into
leading- and higher-order terms:

H = −γ
( 1
γ 0

0 N

)
︸ ︷︷ ︸

H(0)

+−γ
(

0
√
N√

N 0

)
︸ ︷︷ ︸

H(1)

+ · · · .



Diagrammatic Approach to Quantum Search 3

0 0.5 1 1.5 2

γN

0

0.5

1

∆E

|〈a|ψ
1
〉|

2

|〈a|ψ
0
〉|

2

|〈s|ψ
1
〉|

2

|〈s|ψ
0
〉|

2

Fig. 2 Squared overlaps of the eigenstates of H with |s〉 and |a〉 for the complete graph
with N = 1024 vertices.

In lowest order, the eigenstates of H(0) are |a〉 and |b〉 with corresponding
eigenvalues −1 and −γN . If the eigenvalues are nondegenerate, then the per-
turbation H(1) will not significantly change these eigenstates. Then since the
initial superposition state |s〉 is approximately |b〉 for large N , the system will
stay near its inital state, never having a large projection on |a〉. If the eigen-
states are degenerate (i.e., when γ takes its critical value of 1/N), however,
then the perturbation will cause the eigenstates of the perturbed system to be
linear combinations of |a〉 and |b〉:

|ψ0,1〉 = αa|a〉+ αb|b〉,

where the coefficients αa,b can be found by solving(
Haa Hab

Hba Hbb

)(
αa
αb

)
= E

(
αa
αb

)
,

where Hab = 〈a|H(0) +H(1)|b〉, etc. Solving this yields |ψ0,1〉 ∝ |b〉 ± |a〉 with

corresponding eigenvalues E0,1 = −1 ∓ 1/
√
N . Since |b〉 ≈ |s〉, the system

evolves from |s〉 to |a〉 in time π/∆E = π
√
N/2.

This perturbative method can be interpreted to yield a simple diagram-
matic approach to estimate how the search algorithm evolves, without needing
to plot overlaps as in Fig. 2. The search Hamiltonian (2) can be interpreted
as the adjacency matrix of a weighted graph with two vertices and self-loops,
as shown in Fig. 3a. The leading-order Hamiltonian H(0) is shown in Fig. 3b,
and it excludes the edge. Then the leading-order eigenstates are clearly |a〉
and |b〉. We choose γ to make their eigenvalues degenerate so that, when the
perturbation H(1) restores the missing edge, amplitude flows from |b〉 to |a〉.
Since |s〉 ≈ |b〉, the system evolves from |s〉 to |a〉.
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Fig. 3 Apart from a factor of −γ, (a) the Hamiltonian for search on the complete graph
represented as a weighted graph with self-loops, and (b) the leading-order terms.
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Fig. 4 A 5-simplex with each vertex replaced with a complete graph of 5 vertices.

2 Simplex of Complete Graphs

As a more complicated example of this diagrammatic approach, consider search
on the M -simplex with each of its M + 1 vertices replaced with a complete
graph of M vertices, an example of which is shown in Fig. 4 [3]. As before, the
N = M(M+1) vertices of the graph label computational basis states, of which
we are looking for a particular “marked” vertex |a〉 using a randomly walking
quantum particle evolving by Schrödinger’s equation with Hamiltonian (1).

In Fig. 4, identically evolving vertices are identically colored, and we see
that the system evolves in a 7-dimensional subspace, independent of M for
M > 2. Grouping identically-evolving vertices, we get an orthonormal basis
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for this subspace:

|a〉 = |red〉

|b〉 =
1√

M − 1

∑
i∈blue

|i〉

|c〉 = |yellow〉

|d〉 =
1√

M − 1

∑
i∈magenta

|i〉

|e〉 =
1√

M − 1

∑
i∈green

|i〉

|f〉 =
1√

M − 1

∑
i∈brown

|i〉

|g〉 =
1√

(M − 1)(M − 2)

∑
i∈white

|i〉.

Then the Hamiltonian (1) in this subspace is [3]

H = −γ



1
γ

√
M − 1 1 0 0 0 0√

M − 1 M − 2 0 0 1 0 0
1 0 0

√
M − 1 0 0 0

0 0
√
M − 1 M − 2 0 1 0

0 1 0 0 0 1
√
M − 2

0 0 0 1 1 0
√
M − 2

0 0 0 0
√
M − 2

√
M − 2 M − 2


.

Using our diagrammatic approach, we can estimate the two-stage evolution
of the algorithm without plotting overlaps as in Fig. 2 (and are available in
[3]). In the 7-dimensional subspace, the Hamiltonian can be interpreted as the
adjacency matrix of a weighted graph with seven vertices and four self-loops,
as shown in Fig. 5a. For the first stage of the algorithm, the leading-order
Hamiltonian excludes the edges of weight 1, so we have Fig. 5b. From this,
we can visualize the seven eigenstates: two are superpositions of |a〉 and |b〉,
two are superpositions of |c〉 and |d〉, and three are superpositions of |e〉, |f〉,
and |g〉. We choose γ so that the degenerate eigenstates are a superposition
of |a〉 and |b〉 and a superposition of |e〉, |f〉, and |g〉. Then the perturbation
restores the missing edges, and |g〉 ≈ |s〉 evolves to |b〉 since they are the most
dominant pieces among |a〉, |b〉, |e〉, |f〉, and |g〉.

For the second stage of the algorithm, the leading-order Hamiltonian ad-
ditionally excludes terms Θ(

√
M), so we have Fig. 5c. The seven eigenstates

are simply |a〉, |b〉, . . . , |g〉. We choose γ so that |a〉 is degenerate with |b〉,
|d〉, and |g〉. Then the first-order perturbation restores the edges with weight
Θ(
√
M), giving us Fig. 5b. Then probability at |b〉 will move to |a〉. So the

overall evolution of both stages is to evolve from |s〉 ≈ |g〉 to |b〉 to |a〉, exactly
as proved in [3]. Thus by sketching the small weighted graphs with self-loops
in Fig. 5, we are able to estimate the evolution of the algorithm.
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Fig. 5 Apart from a factor of −γ, (a) the Hamiltonian for search on the simplex of complete
graphs represented as a weighted graph with self-loops, (b) the leading-order terms for the
first stage of the algorithm, and (c) the leading-order terms for the second stage of the
algorithm.

3 Hypercube

Degenerate perturbation theory has been used to solve quantum search prob-
lems on several different graphs, but they all evolved in constant-dimensional
subspaces, namely 2D for the complete, 3D for strongly regular, 5D for joined
complete, and 7D for the simplex of complete graphs [2,3]. Here we consider
search on the n-dimensional hypercube, which has N = 2n vertices and evolves
in an (n+ 1)-dimensional subspace. An example of this is shown in Fig. 6. Al-
though search on the hypercube was first solved in [4] using somewhat involved
calculations from [5] and [6], we solve it here much more simply using our di-
agrammatic approach as a guide. In doing so, we give the first example of
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Fig. 6 4-dimensional hypercube.
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Fig. 7 Apart from a factor of −γ, (a) the Hamiltonian for search on the hypercube repre-
sented as a weighted graph with a self-loop, and (b) the leading-order terms.

degenerate perturbation theory solving a search problem where the evolution
occurs in a subspace that grows with N .

We begin by labeling each vertex with an n-bit string. Without loss of
generality, we choose the marked vertex |a〉 to be the string of all 0’s. Then
vertices with the same number of 1’s (i.e., with the same Hamming weight)
evolve identically, and they can be grouped together:

|k〉 =

(
n

k

)−1/2 ∑
z1+···+zn=k

|z1 . . . zn〉.

We use {|k〉 : k = 0, 1, . . . , n} as orthonormal basis vectors of the (n + 1)-
dimensional subspace. In this basis, the Hamiltonian (1) is

H=−γ



1
γ

√
n

√
n 0

. . .

. . .
. . .

√
(n−k)(k+1)√

(n−k)(k+1)
. . .

. . .

. . . 0
√
n√

n 0


.
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Table 1 Comparison of our critical γ with [4] (corrected with an additional factor of 1/2)
for search on the n-dimensional hypercube.

n 1/(Actual Eig) 1/n [4] Rel Error

10 0.100085 0.100000 0.114443 0.126201
20 0.050000 0.050000 0.052995 0.056517
30 0.033333 0.033333 0.034576 0.035934
40 0.025000 0.025000 0.025678 0.026398
50 0.020000 0.020000 0.020426 0.020873
60 0.016667 0.016667 0.016959 0.017264
70 0.014286 0.014286 0.014499 0.014719
80 0.012500 0.012500 0.012662 0.012829
90 0.011111 0.011111 0.011239 0.011370
100 0.010000 0.010000 0.010103 0.010209

Using our diagrammatic approach, H can be interpreted as a weighted graph
with a self-loop, as shown in Fig. 7a. We choose the leading-order Hamiltonian
to disconnect the marked vertex at the left end, yielding Fig. 7b. Then |0〉 (i.e.,
|a〉) is an eigenvector of H(0) with eigenvalue 1/γ (ignoring the overall factor of
−γ), and the remaining n eigenvectors are linear combinations of |1〉, . . . , |n〉.

Note that without the self-loop, Fig. 7a represents the adjacency matrix of
the n-dimensional hypercube, for which the equal superposition state |s〉 is an
eigenstate with eigenvalue n (so that |s〉 is an eigenvector of L = A−D with
eigenvalue 0). Since for large N , this is approximately the vertices |1〉, . . . , |n〉
in Fig. 7b, we expect the equal superposition over them

|r〉 =
1√
N − 1

∑
z1+···+zn 6=0

|z1 . . . zn〉,

which is approximately |s〉, to approximately be an eigenvector of H(0) with
eigenvalue n. We see the accuracy of this approximation in Table 1. For n = 10,
our approximation that the reciprocal of the eigenvalue is 1/n already has four
digits of accuracy.

Continuing with the diagrammatic approach, we make |r〉 degenerate with
|a〉 = |0〉, yielding γc = 1/n, so that the perturbation (i.e., restortation of
the missing edge) causes the system to evolve from |s〉 ≈ |r〉 to |a〉. Table 1
compares our critical γ with the more accurate value derived in [4] (corrected
with an additional factor of 1/2). For example, when n = 40, which is a
“database” with about a trillion entries, the relative error is around 2.6%.
So while our method yields the correct asymptotic critical γ with very little
calculation, more careful analysis, such as that in [4], may be needed for smaller
graphs.

Doing the perturbative calculation, the eigenstates of the perturbed system
are linear combinations of |a〉 and |r〉:

|ψ〉 = αa|a〉+ αr|r〉,
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where the coefficients can be found by solving(
Haa Har

Hra Hrr

)(
αa
αr

)
= E

(
αa
αr

)
,

where Har = 〈a|H|r〉, etc. With γ = 1/n, this is for large N(
−1 −1√

N−1
−1√
N−1 −1

)(
αa
αr

)
= E

(
αa
αr

)
,

which has solutions |ψ0,1〉 ∝ |r〉 ± |a〉 with corresponding eigenvalues E0,1 =
−1∓ 1/(N − 1). So the system evolves from |s〉 ≈ |r〉 to |a〉 in time π/∆E =
Θ(
√
N), which agrees with [4].

From these examples, visualizing search by continuous-time quantum walk
as small weighted graphs with self-loops provides a simple way to estimate the
algorithm’s evolution without needing to plot energy eigenstates. Using this
diagrammatic approach to guide perturbative calculations, we see that degen-
erate perturbation theory’s usefulness in analyzing quantum search on graphs
is not restricted to problems that evolve in constant-dimensional subspaces,
making it a more general tool for analyzing quantum search algorithms than
one might be led to believe from its initial applications in [2,3].
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