Skip to main content
Log in

Effective scheme for \(W\)-state fusion with weak cross-Kerr nonlinearities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a effective \(W\)-state fusion scheme with the help of weak cross-Kerr nonlinearities, which can fuse a \(n\)-qubit \(W\) state and a \(m\)-qubit \(W\) state to a \((m+n-1)\)-qubit state without an ancillary photon. Specially, the present scheme can fuse two Bell states to create a three-qubit \(W\) state. We analyze the resource cost and the success probability of the scheme. The analysis shows that the present scheme requires less resource cost compared with the previous ones and can be achieved with high probability under the current experiment technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003)

    Article  ADS  Google Scholar 

  3. D’Hondt, E., Panangaden, P.: The computational power of the \(W\) and GHZ states. Quantum Inf. Comput. 6, 173–183 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Brieged, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature (London) 430, 54–58 (2004)

    Article  ADS  Google Scholar 

  5. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  7. Kempe, J.: Multiparticle entanglement and its applications to cryptography. Phys. Rev. A 60, 910–916 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Gräfe, M., Heilmann, R., Perez-Leijia, A., Keil, R., Dreisow, F., Heinrich, M., Moya-cessa, H., Nolte, S., Christodoulides, D.N., Szameit, A.: On-chip generation of high-order single-photon \(W\)-states. Nat. Photonics 8, 791G795 (2014)

    Article  Google Scholar 

  9. Ng, H.T., Kim, K.: Quantum estimation of magnetic-field gradient using \(W\)-state. Opt. Commun. 331, 353C358 (2014)

    Article  Google Scholar 

  10. Ozaydin, F.: Phase damping destroys quantum Fisher information of \(W\) states. Phys. Lett. A 378, 3161C3164 (2014)

    Article  Google Scholar 

  11. Yu, N., Guo, C., Duan, R.: Obtaining a \(W\) state from a Greenberger-Horne-Zeilinger state via stochastic local operations and classical communication with a rate approaching unity. Phys. Rev. Lett. 112, 160401 (2014)

    Article  ADS  Google Scholar 

  12. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999)

    Article  ADS  Google Scholar 

  13. Joo, J., Lee, J., Jang, J., Park, Y.J.: Quantum secure communication with \(W\) states. arXiv:quant-ph/0204003v2

  14. Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)

    Article  ADS  Google Scholar 

  15. Zeilinger, A., Horne, M.A., Weinfurter, H., Żukowski, M.: Three-particle entanglements from two entangled pairs. Phys. Rev. Lett. 78, 3031–3034 (1997)

    Article  ADS  Google Scholar 

  16. Tashima, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N.: Elementary optical gate for expanding an entanglement web. Phys. Rev. A 77, 030302 (2008)

    Article  ADS  Google Scholar 

  17. Tashima, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N.: Local expansion of photonic \(W\) state using a polarization-dependent beamsplitter. New J. Phys. 11, 023024 (2009)

    Article  ADS  Google Scholar 

  18. Tashima, T., Wakatsuki, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N.: Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon \(W\) State. Phys. Rev. Lett. 102, 130502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Özdemir, Ş.K., Matsunaga, E., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: An optical fusion gate for \(W\)-states. New J. Phys. 13, 103003 (2011)

    Article  Google Scholar 

  20. Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the \(W\)-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87, 032331 (2013)

    Article  ADS  Google Scholar 

  21. Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic \(W\) or Bell states. Quantum Inf. Process. 12, 2965–2975 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Ozaydin, F., Bugu, S., Yesilyurt, C., Altintas, A.A., Tame, M., Özdemir, Ş.K.: Fusing multiple \(W\) states simultaneously with a Fredkin gate. Phys. Rev. A 89, 042311 (2014)

    Article  ADS  Google Scholar 

  23. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  24. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  25. Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79, 022301 (2009)

    Article  ADS  Google Scholar 

  26. Guo, Q., Bai, J., Cheng, L.Y., Shao, X.Q., Wang, H.F., Zhang, S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83, 054303 (2011)

    Article  ADS  Google Scholar 

  27. Zhao, R.T., Guo, Q., Cheng, L.Y., Sun, L.L., Wang, H.F., Zhang, S.: Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity. Chin. Phys. B 22, 030313 (2013)

    Article  ADS  Google Scholar 

  28. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  29. Sun, L.L., Wang, H.F., Zhang, S., Yeon, K.H.: Entanglement concentration of partially entangled three-photon \(W\) states with weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 000630 (2012)

    Article  ADS  Google Scholar 

  30. Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302(R) (2005)

    Article  ADS  Google Scholar 

  31. Munro, W.J., Nemoto, K., Spiller, T.P., Barrett, S.D., Kok, P., Beausoleil, R.G.: Efficient optical quantum information processing. J. Opt. B Quantum Semiclass. Opt. 7, S135 (2005)

    Article  ADS  Google Scholar 

  32. Kok, P., Munro, W.J., Nemoto, K.K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  33. Leonhardt, U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  34. Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)

    Article  ADS  Google Scholar 

  35. Bartkowoak, M., Miranowicz, A.: Linear-optical implementations of the iSWAP and controlled NOT gates based on conventional detectors. J. Opt. Soc. Am. B 27, 112369 (2010)

    ADS  Google Scholar 

  36. Chen, Q., Feng, M.: Quantum-information processing in decoherence-free subspace with low-Q cavities. Phys. Rev. A 82, 052329 (2010)

    Article  ADS  Google Scholar 

  37. Kobayashi, T., Ikuta, R., Özdemir, Ş.K., Tame, M., Yamamoto, T., Koashi, M., Imoto, N.: Universal gates for transforming multipartite entangled Dicke states. New J. Phys. 16, 023005 (2014)

    Article  ADS  Google Scholar 

  38. Kok, P., Braunstein, S.L.: Postselected versus nonpostselected quantum teleportation using parametric down-conversion. Phys. Rev. A 61, 042304 (2000)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants Nos. 61465013, 11465020, and 11264042; the Program for Chun Miao Excellent Talents of Jilin Provincial Department of Education under Grant No. 201316; and the Talent Program of Yanbian University of China under Grant No. 950010001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Hu, S., Guo, Q. et al. Effective scheme for \(W\)-state fusion with weak cross-Kerr nonlinearities. Quantum Inf Process 14, 1919–1932 (2015). https://doi.org/10.1007/s11128-015-0960-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0960-x

Keywords

Navigation