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Recently, Girolami and Adesso have demonstrated that the calculation of quantum discord for two-qubit case
can be viewed as to solve a pair of transcendental equation (Phys. Rev. A,83, 052108(2011)). In present work,
we introduce the generalized Choi-Jamiolkowski isomorphism and apply it as a convenient tool for constructing
transcendental equations. For the general two-qubit case,we show that the transcendental equations always
have a finite set of universal solutions, this result can be viewed as a generalization of the one get by Ali, Rau,
and Alber (Phys. Rev. A,81, 042105 (2010)). For a subclass ofX state, we find the analytical solutions by
solving the transcendental equations.

PACS numbers: 03.67.Lx

I. INTRODUCTION

How to quantify and characterize the nature of correlations
in a quantum state, besides the fundamental scientific interest,
has a crucial applicative importance in the field of quantum
information processing [1]. For a bipartite quantum state, it
is known that both the classical and quantum correlations are
contained in it. Beyond the entanglement, quantum discord
was introduced as a more general measure of quantum cor-
relation [2, 3], and was regarded as a resource for quantum
computation [4], quantum state merging [5, 6]. Quantum dis-
cord has attracted much attention recently [4–15], and has also
been generalized to continuous-variable systems for Gaussian
states [16, 17] and non-Gaussian states [18].

Quantum discord is very hard to calculate even for two-
qubit states because of the minimization over all possible mea-
surements. For an important class of two-qubit states, the
so-calledX states, Ali, Rau, and Alber (ARA) proposed an
algorithm to calculate the quantum discord with minimization
taken over only a few simple cases [9]. However, a counterex-
ample for the ARA algorithm was given by Luet. al. [10],
where the authors proved that, for the entire class osX states,
the optimization procedure involved in the classical correla-
tion should be state dependent. For the realX states, Chen
et. al. have identified a class of states, where quantum dis-
cord can be evaluated analytically without any minimization,
and hence the ARA algorithm is valid. Meanwhile, they also
identified a family of states for which the ARA algorithm fails
[19].

The ARA algorithm involved a minimization procedure
with four constrained parameters. However, Girolami and
Adesso have shown that two free parameters, the polar and az-
imuthal angles usually used to describe an arbitrary unit Bloch
vector, are already sufficient. With the two angles, one may
obtain two partial derivatives for the conditional entropy, and
by setting the two partial derivatives to be zero, the minimiza-
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tion procedure can be simplified as to find the solutions of
a pair of transcendental equations [20]. Usually, one should
firstly give all the possible solutions, which are series of val-
ues of the two angles, and then select out the optimal setting
where the conditional entropy takes the minimal value.

Although the transcendental equations is direct and reliable,
it has been argued that, for general case, one cannot solve
the problem analytically since these equations involves log-
arithms of nonlinear quantities [20]. In preset work, we shall
give some further discussion about this problem. First, we
introduce the generalized Choi-Jamiolkowski isomorphismas
a convenient tool to construct the transcendental equations.
Then, for the general two-qubit case, we demonstrate that
the transcendental equations have a set of universal solutions
which have been discovered by the ARA algorithm. Finally,
for a subclass of theX state, we give the analytical solution
by solving the transcendental equations.

The content of present work is organized as follows. In
Sec.II ., we give a brief review of the quantum discord. In
Sec.III ., we introduce the general Choi-Jamiolkowski isomor-
phism. In Sec.IV, a detail introduction of the Bloch vector
transformation is discussed. In Sec.V, we give a classifica-
tion of the solutions for the partial equation of the classical
mutual information. In Sec.VI , several examples are given
there. Finally, we end our work with a short conclusion.

II. THE QUANTUM DISCORD

The correlations for a bipartite state can be quantified by
the quantum mutual information. For a given density matrix
ρab of a bipartite systemHa⊗Hb, the quantum mutual infor-
mation is defined as

I = S(ρa) + S(ρb)− S(ρab), (1)

whereS(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy,
andρa (ρb) denotes the reduced density matrix of subsystem
Ha (Hb). The quantum mutual information can be expressed
as the sum of two part,

I(ρab) = C(ρab) +Q(ρab), (2)
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with C(ρab) the classic correlation andQ(ρab) the quantum
discord [2, 3]. To quantify the quantum discord, Olliver and
Zurek [2] has suggested the use of von Neumann type mea-
surements:{Πi}Di=1, with Πi the one-dimensional projective
operators. After the measurement on subsystemHb, a density
operatorρj associated with the outcomej is

ρj =
1

pj
(ID ⊗Πj)(ρ

ab)(ID ⊗Πj), (3)

with pj the probability for thej-th outcome. UseS(ρ|Πj) =
∑

pjS(ρj) to denote the quantum conditional entropy, and
the corresponding quantum mutual information reads

I ′(ρab|Πj) = S(ρa)− S(ρ|Πj). (4)

Then, the classical correlation is

C(ρab) := sup{Πj}I ′(ρab|Πj), (5)

and the quantum discord is defined as

Q(ρab) := I(ρab)− C(ρab). (6)

III. THE SYSTEM-ANCILLA-ENVIRONMENT PICTURE

The Choi-Jamiolkowski isomorphism is a useful connec-
tion between quantum channel and a bipartite state [21], say,
ρab = ε ⊗ ID(|S+〉〈S+|), with |S+〉 the maximally entan-
gled state of the bipartite system. Our work is motivated by
such a simple idea: We first express a density operatorρab

with a quantum channelε, and then the analytic expression of
the quantum discord for theD ⊗D system can be simplified
since only aD-dimensional quantum processε is involved. It
should be noticed that the isomorphism above is only avail-
able for the cases when the reduced density matrixρb is a
completely mixture,ρb = ID/D. With careful analysis, we
find that the isomorphism above can take a general form as
the maximally entangled state is substituted by a general en-
tangled state, and then, the density matrix with a full-rank
reduced matrixρb can always be expressed with a quantum
channel and an entangled state. Meanwhile, the Bloch vector
transformation can be applied to describe the quantum opera-
tion for the qubit case. Therefore, the derivation of the quan-
tum discord is closely related to the property of the quantum
channel.

To study a quantum channelε of aD-dimensional system
Ha, it is convenient to introduce an ancilla systemHb with
an equal dimension. Prepare a pure entangled state|Φ〉 as
the initial state of the bipartite systemHa ⊗ Hb, and since
the systemHa is subjected to a interaction described by the
trace-preserving quantum operationε with the environment,
the final state is

ρab = ε⊗ ID(|Φ〉〈Φ|). (7)

From it, we can obtain a lot of information about the quantum
channel. For example, the Schmacher’s channel fidelity is de-
fined asF = 〈Φ|ρab|Φ〉, which provides a measure of how

well the entanglement between the two system is preserved
by the quantum processε [22]. In the following, we shall
show that this process is reversible: If the reduced matrix of
Hb is full-rank, it can always be described by the correspond-
ing ε and |Φ〉. To prove this, we should first notice that a
bounded operator inHD is always related to a vector in a ex-
tended Hilbert spaceH⊗2

D . DenoteA to be a bounded operator
on theD-dimensional Hilbert spaceHD, with Aij = 〈i|A|j〉
the matrix elements, and an isomorphism betweenA and a
D2-dimensional vector|A〉〉 can be

|A〉〉 =
√
DA⊗ ID|S+〉 =

D
∑

i,j=1

Aij |ij〉, (8)

where|S+〉 is the maximally entangled state inH⊗2
D , |S+〉 =

∑D
k=1 |kk〉/

√
D with |ij〉 = |i〉 ⊗ |j〉. This isomorphism

offers a one-to-one map between an operator and its vector
form. Suppose thatA , B, andρ are three arbitrary bounded
operators onHD, and then

Tr(A†B) = 〈〈A|B〉〉, |AρB〉〉 = A⊗BT|ρ〉〉, (9)

with BT the transpose ofB.
Now, consider aD2 ×D2 density matrix,

ρab =

D2

∑

m=1

λm|Ψm〉〈Ψm| (10)

where|Ψm〉 are the normalized eigenvectors of the bipartite
density operatorρab, 〈Ψm|Ψn〉 = δmn, andλm are the cor-

responding eigenvalues with
∑D2

m λm = 1. Due to the iso-
morphism|Ψm〉 = |Γm〉〉, the density matrixρab can be also
expressed as

ρab =
∑

m

λm|Γm〉〉〈〈Γm|,

and the transpose of the reduced density matrixρb can be de-
rived as

(ρb)T =
∑

m

λmΓ†
mΓm. (11)

A simple proof of Eq. (11) is as following: With the equations
in Eq. (9) and Eq. (10), one can obtain〈〈Γm|ki〉 = 〈i|Γ†

m|k〉,
and 〈kj|Γm〉〉 = 〈k|Γm|j〉. Plugging these results into the
definition of the partial trace operation, we have

〈i|(ρb)T|j〉 = 〈j|(ρb)|i〉

=

D
∑

k=1

〈kj|
∑

m

λm|Γm〉〉〈〈Γm|ki〉

=
∑

m

∑

k

λm〈i|Γ†
m|k〉〈k|Γm|j〉

= 〈i|
∑

m

λmΓ†
mΓm|j〉.
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For the two-qubit case,D = 2, and one can further assume
det(ρb)T) 6= 0, and define

√

(ρb)T = UΩU †, (12)

where

Ω =

(

cos γ
2

0
0 sin γ

2

)

,

with U a 2 × 2 unitary transformation. Furthermore, one can
introduce a set of Kraus operators{Em}4m=1 for the quantum
processε as follows:

Em =
√

λmΓmUΩ−1,
∑

m

E†
mEm = I2, (13)

and now, the density matrixρab can be rewritten as

ρab =
∑

m

Em ⊗ I2|ΩU †〉〉〈〈ΩU †|E†
m ⊗ I2

=
∑

m

Em ⊗ U∗|Ω〉〉〈〈Ω|E†
m ⊗ (U∗)†.

It is obvious that a new basis forHb can be defined as

|0〉 = (U∗)†|0〉, |1〉 = (U∗)†|1〉,

and the relation in Eq. (7) with the entangled state

|Φ〉 = |Ω〉〉 = cos
γ

2
|00〉+ sin

γ

2
|11〉.

can be obtained. In this picture, the two reduced density ma-
trices are

ρb =

(

cos2 γ
2

0
0 sin2 γ

2

)

, ρa = ε(ρb). (14)

It should be mentioned that(ρb)T has the same determinant
asρb, and furthermore, our method above can be easily gen-
eralized for the cases with the arbitrary dimensionD.

In the following, we shall focus on the situation where a von
Neumann measurement is performed on subsystemHb. Two
free parameters,θ andφ, can be used for the measurement
operatorsΠi = |ψi〉〈ψi|(i = 1, 2), where

|ψ1〉 = cos
θ

2
|0〉+ sin

θ

2
exp(iφ)|1〉, (15)

|ψ2〉 = − sin
θ

2
|0〉+ cos

θ

2
exp(iφ)|1〉. (16)

After the measurement, the final stateρa
′b′ can be formally

expressed asρa
′b′ = ε⊗ I2(ρ̄), where

ρ̄ =

2
∑

j=1

I2 ⊗Πj |Ω〉〉〈〈Ω|I2 ⊗Πj . (17)

By some algebra, we find thatρ̄ is a mixture of product state

ρ̄ =

2
∑

j=1

pj |φj〉〈φj | ⊗ |ψj〉〈ψj |, (18)

with pj the probabilities

p1 =
1

2
(1 + cos θ cos γ), p2 =

1

2
(1− cos θ cos γ), (19)

and|φj〉(j = 1, 2) are a pair of pure states defined as

|φ1〉 =
1√
p1

(cos
γ

2
cos

θ

2
|0〉+ sin

γ

2
sin

θ

2
e−iφ|1〉),

|φ2〉 =
1√
p2

(− cos
γ

2
sin

θ

2
|0〉+ sin

γ

2
cos

θ

2
e−iφ|1〉).

Finally, one can obtain

ρa
′b′ =

2
∑

j=1

pjρj ⊗ |ψj〉〈ψj |, ρj = ε(|φj〉〈φj |). (20)

Meanwhile, it is easy to check that
∑

j pj |φj〉〈φj | = ρb, and
therefore

2
∑

j=1

pjρj = ε(ρb) = ρa. (21)

From Eq. (20), we see that the classic informationI ′ is a
function of the free parametersθ andφ,

I ′(θ, φ) = S(ρa)−
2

∑

j=1

pjS(ρj), (22)

and the quantum discord can be accessed if the maximum
value ofI ′(θ, φ) has been decided

Q = I −Maxθ,φI ′(θ, φ). (23)

IV. THE BLOCH VECTOR TRANSFORMATION

In order to obtain the analytic expression of the quantum
discord for a two-qubit state, we shall at first give a generalex-
pression of the conditional entropy

∑2

j=1 pjS(ρj). The Bloch
representation is very useful for the single-qubit state, and the
stateρ can be written asρ = 1

2
(I2 + ~r · ~σ) with ~r is a three

component real vector and~σ = (σx, σy , σz). Meanwhile, it
turns out that an arbitrary trace-preserving quantum operation
is equivalent to a map such that

~r′ → ~r = η~r + ~c, (24)

with η a 3 × 3 real matrix,~c a constant vector, andε(ρ) =
1
2
(I2+ ~r′ ·~σ). This is an affine map, mapping the Bloch sphere

into itself [1], and can be explicitly expressed as




r′x
r′y
r′z



 =





ηxx ηxy ηxz
ηyx ηyy ηyz
ηzx ηzy ηzz









rx
ry
rz



+





cx
cy
cz



 , (25)

with the coefficients defined as

ηij =
1

2
Tr[σjε(σi)], ck =

1

2
Tr[σkε(I2)]. (26)
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Here, we have used

|φ1〉〈φ1| =
1

2
(I2 + ~s · ~σ), |φ2〉〈φ2| =

1

2
(I2 + ~t · ~σ), (27)

and the two unit vectors~s and~t

sx =
sin γ sin θ cosφ

1 + cos γ cos θ
, sy =

sin γ sin θ sinφ

1 + cos γ cos θ
,

sz =
cos γ + cos θ

1 + cos γ cos θ
, tx =

− sin γ sin θ cosφ

1− cos γ cos θ
, (28)

ty =
− sin γ sin θ sinφ

1− cos γ cos θ
, tz =

cos γ − cos θ

1− cos γ cos θ
.

With the following two vectors,

~s′ = η~s+ ~c,~t′ = η~t+ ~c (29)

one may have

ρ1 =
1

2
(I2 + ~s′ · ~σ), ρ2 =

1

2
(I2 + ~t′ · ~σ), (30)

For simplicity, s′(θ, φ) and t′(θ, φ) are used to denote the
purity of the density matrixρ1 and ρ2 respectively, and

s′(θ, φ) = |~s′| =
√

(s′x)
2 + (s′y)

2 + (s′z)
2, t′(θ, φ) = |~t′|.

It is easy to note that there exists a symmetry between these
two functions: Under the transformation

θ → π − θ, φ→ φ+ π (31)

these two functions are interchanged

s′(θ, φ) ⇐⇒ t′(θ, φ). (32)

This result comes from the fact that~r(π−θ, φ+π) = ~s(θ, φ),
which can be seen from Eq. (28).

V. CLASSIFICATION OF THE SOLUTIONS

With the Bloch vector introduced in above section, one may
get a general expression of the classic information,

I ′(θ, φ) = S(ρa)− p1H2(
1 + s′

2
)− p2H2(

1 + t′

2
), (33)

with H2(p) the binary entropy defined asH2(p) =

−p log2 p− (1−p) log2(1−p). From Eq. (19), ∂p1

∂θ = −∂p2

∂θ .
Therefore, we can obtain

∂I ′

∂φ
=

∂s′

∂φ
(p1 log2

√

1 + s′

1− s′
) +

∂t′

∂φ
(p2 log2

√

1 + t′

1− t′
),

∂I ′

∂θ
= −∂p1

∂θ
(H2(

1 + s′

2
)−H2(

1 + t′

2
)) (34)

+
∂s′

∂θ
(p1 log2

√

1 + s′

1− s′
) +

∂t′

∂θ
(p2 log2

√

1 + t′

1− t′
).

As a necessary condition, the maximum value may happen
with

∂I ′/∂φ = 0, ∂I ′/∂θ = 0. (35)

In the following, we shall show that the following two types
of solutions are universal:

(A)The symmetric solution: In this case, one of the solu-
tions happens with the setting

θ =
π

2
, φ = φ̄, (36)

with φ̄ is constrained by

s′(θ, φ̄) = s′(θ, π + φ̄), (37)

∂s′(π/2, φ)

∂φ
|φ=φ̄ = −∂t

′(π/2, φ)

∂φ
|φ=φ̄. (38)

Following the discussions about the symmetry between
s′(θ, φ̄) andt′(θ, φ̄), there should be

s′(π/2, φ̄) = t′(π/2, φ̄), (39)

∂s′(θ, φ̄)

∂θ
|θ=π/2 = −∂t

′(θ, φ̄)

∂θ
|θ=π/2. (40)

Jointing the above results with

p1(θ = π/2) =
1

2
, p2(θ = π/2) =

1

2
, (41)

one can conclude that the setting in Eq. (36) is one of the
solutions.

(B)The asymmetric solution: Another solution of the partial
equation exists with the setting

θ = θ̃, φ = φ̃, (42)

with θ̃ andφ̃ the solution of the equations below,

∂s′(θ, φ̃)

∂θ
|θ=θ̃ =

∂t′(θ, φ̃)

∂θ
|θ=θ̃ = 0, (43)

∂s′(θ̃, φ)

∂φ
|φ=φ̃ =

∂t′(θ̃, φ)

∂φ
|φ=φ̃ = 0, (44)

∂p1
∂θ

|θ=θ̃ =
∂p2
∂θ

|θ=θ̃ = 0, (45)

Except the special case wherep1 = p2 = 1/2, θ = 0 is the
only possible solution for the equations above since∂pi/∂θ ∝
sin θ, (i = 1, 2). By jointing it with the symmetric solution,
θ = π/2, the main result in [9], which states that the polar
angleθ may take the value0 or π/2 for theX states, is also
suitable for the general two-qubit case.

(C)The state-dependent solution: For some given states, the
two transcendental equations in Eq. (35) may have other type
solutions beside the universal one given above. We shall give
an example in the next section.

VI. EXAMPLES

(A) The X state. This type of density matrix has been
widely discussed in previous works [7, 9, 10],

ρab =







ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44






. (46)
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By some simple algebra, we may see that the map in
Eq. (25) now take the form





r′x
r′y
r′z



 =





ηxx ηxy 0
ηyx ηyy 0
0 0 ηzz









rx
ry
rz



+





0
0
cz



 , (47)

Here, we focus on the case whencos γ = 0, which means
the pure state|Φ〉 in Eq. (7) is the maximally entangled state.
Under this condition, the probability for each final state takes
the same value,p1 = p2 = 1/2. The transcendental equations
are reduced as

0 =
∂s′

∂φ
(log2

√

1 + s′

1− s′
) +

∂t′

∂φ
(log2

√

1 + t′

1− t′
), (48)

0 =
∂s′

∂θ
(log2

√

1 + s′

1− s′
) +

∂t′

∂θ
(log2

√

1 + t′

1− t′
). (49)

With the vector transformation, we shall get

s′(θ, φ) = {sin2 θf(φ) + [cz + ηzz cos θ]
2} 1

2 , (50)

t′(θ, φ) = {sin2 θf(φ) + [cz − ηzz cos θ]
2} 1

2 , (51)

f(φ) = (ηxx cosφ+ ηxy sinφ)
2 + (ηyx cosφ+ ηyy sinφ)

2

Note thats′ and t′ depend onφ in the same way. There-
fore, the optimal setting forφ should be decided by equation,
∂f(φ)/∂φ = 0, can be easily solved. By introducing a set of
parameters,

η2⊥ = max
φ

f(φ), a = η2⊥ + c2z, b = ηzzcz, (52)

c = η2zz − η2⊥, k =
c

b2 − ca
, (53)

we can expresss′ andt′ with a simple form,

s′ = {a+2b cosθ+c cos2 θ} 1

2 , t′ = {a−2b cosθ+c cos2 θ} 1

2 .

From it, we get the derivatives,

|∂s
′

∂θ
| = sin θ

√

b2 − caG(s′),

|∂t
′

∂θ
| = sin θ

√

b2 − caG(t′),

G(x) =

√
1 + kx2

x
, 0 < x < 1. (54)

Note that two derivatives can not be positive at the same time,
we can rewrite Eq. (49) as

0 =
sin θ

√
b2 − ca

2 ln 2
(H(s′)−H(t′)), (55)

H(x) =

√
1 + kx2

x
ln

1 + x

1− x
, 0 < x < 1 (56)

Here, we shall show that: In the parameter range

k ≥ −2

3
or k ≤ −1, (57)

the equation in (55) has no other solutions besideθ = 0 and
s′ = t′. From Eq. (56), there should be

∂H(x)

∂x
= − 1

x2
√
1 + kx2

[ln
1 + x

1− x
− 2x

(1 + kx2)

1− x2
] (58)

with the expanding formula

ln
1 + x

1− x
= 2x(1 +

∑

n=1

x2n

2n+ 1
),

(1 + kx2)

1− x2
= 1+ (1 + k)

∑

n=1

x2n,

and the condition in Eq. (57), we see that∂H(x)/∂x is non-
zero in the parameter range0 < x < 1. Therefore,H(s′) =
H(t′) can only happen withs′ = t′. If cz 6= 0, s′ = t′ has
the unique settingθ = π/2. If cz = 0, s′ = t′ can hold for
an arbitraryθ, while from Eqs. (50-51), we find the optimal
setting is eitherθ = 0 or θ = π/2. Based on these analysis
above, we conclude that the universal solutions are sufficient
for the cases above.

Among all theX-type states, the Bell diagonal state is one
of the most interesting cases, and in the parameterized state
model here, it corresponds to the situation





r′x
r′y
r′z



 =





ηxx 0 0
0 ηyy 0
0 0 ηzz









rx
ry
rz



 (59)

Now, the parameterk takes the valuek = −1/η2⊥ < −1. The
symmetric solution should bes′(π/2, φ̄) = t′(π/2, φ̄) = η⊥
while the asymmetric solution has a compact forms′(θ̃, φ̃) =
t′(θ̃, φ̃) = |ηzz |. Finally, which kind of solution, the symmet-
ric one or the asymmetric one, should be viewed as the classic
correlationC in Eq. (5), is decided by the actual values ofηxx,
ηyy,andηzz . Formally, it an be expressed as

C = 1−H2(
1 + ηopt

2
), (60)

with ηopt = Max{|ηxx|, |ηyy|, |ηzz|}.
(B) In Ref. [10], a simple density matrix is given as

ρab =







0.0783 0 0 0
0 0.1250 0.1000 0
0 0.1000 0.1250 0
0 0 0 0.6170






. (61)

With numerical calculation, we find the transcendental equa-
tions in Eq. (35) have three solutions,θ = 0, θ = π/2 and
θ ≈ 0.155π. Among all these possible settings,θ ≈ 0.155π
is the optimal one. With this simple example, we show that
the universal solutions are not always the optimal one.

VII. CONCLUSIONS

Our present work has followed the original definition of the
quantum discord in Ref. [2], where the von Neumann projec-
tive measurement is performed. This measurement can also
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be generalized to the more general positive operator-valued
measurement (POVM) [3]. Furthermore, the concept of the
quantum discord itself has been developed in recent years. For
examples, the relative entropy quantum discord [12], the geo-
metric quantum discord [13, 14] and their relations to the orig-
inal definition have been investigated. Although our deriva-
tion is the for the original quantum discord, the general Choi-
Jamiolkowski isomorphism used here may also be applied for
the discussion for other types of quantum discord.

In summary, we have applied the general Choi-
Jamiolkowski isomorphism as a convenient tool for construct-
ing the transcendental equations. For the general two-qubit
case, we have shown that the transcendental equations al-
ways have a finite set of universal solutions, this result can

be viewed as a generalization of the one get with the ARA
algorithm. However, for some cases, the transcendental equa-
tions can have solutions beside the universal ones. We also
consider a subclass ofX state, for which the transcendental
equation may offer analytical solutions.
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