Skip to main content
Log in

Quantum information processing in collective-rotating decoherence-free subspace

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Using the atomic state encoded in the collective-rotating decoherence-free subspace (CRDFS), two methods to construct the hybrid-controlled-phase-flip gate between photon and the single logic qubit are presented assisted by the cavity input–output process. Then, ways to realize the common single-qubit operations in CRDFS are given out. Based on the former gate and single-qubit operations, methods to construct the parity gate and controlled-phase gate in CRDFS are discussed. Next, two ways to realize the Bell-state measurement and the approach to realize quantum information transfer in CRDFS are proposed. Final discussion and numerical simulation reveal that our work is feasible and useful for quantum information processing tasks in CRDFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. A 452, 2551–2577 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  3. Chiaverini, J., Leibfried, D., Schaetz, T., Barrett, M.D., Blakestad, R.B., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Ozeri, R., Wineland, D.J.: Realization of quantum error correction. Nature (London) 432, 602–605 (2004)

    Article  ADS  Google Scholar 

  4. Palma, G.M., Suominen, K., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. A 452, 567–584 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Duan, L.-M., Guo, G.-C.: Preserving coherence in quantum computation by pairing quantum bits. Phys. Rev. Lett. 79, 1953–1956 (1997)

    Article  ADS  Google Scholar 

  6. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306–3309 (1997)

    Article  ADS  Google Scholar 

  7. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)

    Article  ADS  Google Scholar 

  8. Feng, M.: Grover search with pairs of trapped ions. Phys. Rev. A 63, 052308 (2001)

    Article  ADS  Google Scholar 

  9. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature (London) 417, 709–711 (2002)

    Article  ADS  Google Scholar 

  10. Xue, P., Xiao, Y.F.: Universal quantum computation in decoherence-free subspace with neutral atoms. Phys. Rev. Lett. 97, 140501 (2006)

    Article  ADS  Google Scholar 

  11. Deng, Z.J., Feng, M., Gao, K.L.: Preparation of entangled states of four remote atomic qubits in decoherence-free subspace. Phys. Rev. A 75, 024302 (2007)

    Article  ADS  Google Scholar 

  12. Wei, H., Deng, Z.J., Zhang, X.L., Feng, M.: Transfer and teleportation of quantum states encoded in decoherence-free subspace. Phys. Rev. A 76, 054304 (2007)

    Article  ADS  Google Scholar 

  13. Wei, H., Yang, W.L., Deng, Z.J., Feng, M.: Many-qubit network employing cavity QED in a decoherence-free subspace. Phys. Rev. A 78, 014304 (2008)

    Article  ADS  Google Scholar 

  14. Chen, Q., Feng, M.: Quantum-information processing in decoherence-free subspace with low-Q cavities. Phys. Rev. A 82, 052329 (2010)

    Article  ADS  Google Scholar 

  15. Zhang, Z.R., Li, C.Y., Wu, C.W., Dai, H.Y., Li, C.Z.: Universal quantum computation in a decoherence-free subspace for the \(\hat{{\sigma }}_x \)-type collective noise with superconducting charge qubits Phys. Rev. A 86, 042320 (2012)

    Article  Google Scholar 

  16. Zhang, Z.R., Wu, C.W., Li, C.Y., Dai, H.Y., Li, C.Z.: Universal quantum computation in a decoherence-free subspace for collective relaxation with transmon qubits. Phys. Rev. A 87, 062325 (2013)

    Article  ADS  Google Scholar 

  17. Garg, A.: Decoherence in ion trap quantum computers. Phys. Rev. Lett. 77, 964–967 (1996)

    Article  ADS  Google Scholar 

  18. Plenio, M.B., Knight, P.L.: Realistic lower bounds for the factorization time of large numbers on a quantum computer. Phys. Rev. A 53, 2986–2990 (1996)

    Article  ADS  Google Scholar 

  19. James, D.F.V., Knill, E.H., Laflamme, R., Petschek, A.G.: Decoherence bounds on quantum computation with trapped ions. Phys. Rev. Lett. 77, 3240–3243 (1996)

    Article  ADS  Google Scholar 

  20. Zheng, S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A 68, 035801 (2003)

    Article  ADS  Google Scholar 

  21. Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  22. Boileau, J.-C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 017901 (2004)

    Article  ADS  Google Scholar 

  23. Li, C.-Y., Zhang, Z.-R., Sun, S.-H., Jiang, M.-S., Liang, L.-M.: Logic-qubit controlled-NOT gate of decoherence-free subspace with nonlinear quantum optics. J. Opt. Soc. Am. B 30, 1872–1877 (2013)

    Article  ADS  Google Scholar 

  24. Fang, B.-L., Wu, T., Ye, L.: Realization of a general quantum cloning machine via cavity-assisted interaction. Europhys. Lett. 97, 60002 (2012)

    Article  ADS  Google Scholar 

  25. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  26. Duan, L.-M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  27. Duan, L.-M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)

    Article  ADS  Google Scholar 

  28. Sauer, J.A., Fortier, K.M., Chang, M.S., Hamley, C.D., Chapman, M.S.: Cavity QED with optically transported atoms. Phys. Rev. A 69, 051804 (2004)

    Article  ADS  Google Scholar 

  29. Mandel, O., Greiner, M., Widera, A., Rom, T., Hänsch, T.W., Bloch, I.: Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett. 91, 010407 (2003)

    Article  ADS  Google Scholar 

  30. Kuhr, S., Alt, W., Schrader, D., Dotsenko, I., Miroshnychenko, Y., Rosenfeld, W., Khudaverdyan, M., Gomer, V., Rauschenbeutel, A., Meschede, D.: Coherence properties and quantum state transportation in an optical conveyor belt. Phys. Rev. Lett. 91, 213002 (2003)

    Article  ADS  Google Scholar 

  31. Pachos, J., Walther, H.: Quantum computation with trapped ions in an optical cavity. Phys. Rev. Lett. 89, 187903 (2002)

    Article  ADS  Google Scholar 

  32. Goto, H., Ichimura, K.: Multiqubit controlled unitary gate by adiabatic passage with an optical cavity. Phys. Rev. A 70, 012305 (2004)

    Article  ADS  Google Scholar 

  33. Deng, Z.J., Gao, K.L., Feng, M.: Alternative scheme for a two-qubit conditional phase gate by adiabatic passage under dissipation. J. Phys. B 40, 351–359 (2007)

    Article  ADS  Google Scholar 

  34. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  35. Beenakker, C.W.J., DiVincenzo, D.P., Emary, C., Kindermann, M.: Charge detection enables free-electron quantum computation. Phys. Rev. Lett. 93, 020501 (2004)

    Article  ADS  Google Scholar 

  36. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  37. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  Google Scholar 

  38. Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature (London) 414, 413–418 (2001)

    Article  ADS  Google Scholar 

  39. Gottesman, D., Chuang, I.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature (London) 402, 390–393 (1999)

    Article  ADS  Google Scholar 

  40. Knill, E., Laflamme, R., Milburn, G.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  41. Maunz, P., Puppe, T., Schuster, I., Syassen, N., Pinkse, P.W.H., Rempe, G.: Normal-mode spectroscopy of a single-bound-atom-cavity system. Phys. Rev. Lett. 94, 033002 (2005)

    Article  ADS  Google Scholar 

  42. Xiao, Y.F., Lin, X.M., Gao, J., Yang, Y., Han, Z.F., Guo, G.C.: Realizing quantum controlled phase flip through cavity QED. Phys. Rev. A 70, 042314 (2004)

    Article  ADS  Google Scholar 

  43. Mei, F., Yu, Y.F., Feng, X.L., Zhu, S.L., Zhang, Z.M.: Optical quantum computation with cavities in the intermediate coupling region. Europhys. Lett. 91, 10001 (2010)

    Article  ADS  Google Scholar 

  44. Shao, X.-Q., Zheng, T.-Y., Zhang, S.: Engineering steady three-atom singlet states via quantum-jump-based feedback. Phys. Rev. A 85, 042308 (2012)

    Article  ADS  Google Scholar 

  45. Chen, L., Wang, H.-F., Zhang, S.: Entanglement dynamics of three atoms under quantum-jump-based feedback control. J. Opt. Soc. Am. B 30, 475–481 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou Zhang.

Additional information

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61465013, 11465020 and 11264042.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, SL., Wang, HF. & Zhang, S. Quantum information processing in collective-rotating decoherence-free subspace. Quantum Inf Process 14, 1855–1867 (2015). https://doi.org/10.1007/s11128-015-0975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0975-3

Keywords

Navigation