Skip to main content
Log in

Realizing an efficient fusion gate for W states with cross-Kerr nonlinearities and QD-cavity coupled system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a new scheme for fusing two arbitrary-size photonic W states encoded by polarizations to generate a larger W state. With the help of cross-Kerr nonlinearities and a quantum dot in an optical cavity (QD-cavity coupled system), we can realize the fusion of W states with a high success probability. In addition, the scheme does not need any ancillary photon, and it can also be applied to fuse two Bell states. The scheme can be realized with current experimental technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003)

    ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MATH  MathSciNet  Google Scholar 

  3. Zhao, Z., et al.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004)

    Article  ADS  Google Scholar 

  4. Kempe, J.: Multiparticle entanglement and its applications to cryptography. Phys. Rev. A 60, 910–916 (1999)

    ADS  MathSciNet  Google Scholar 

  5. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    ADS  MathSciNet  Google Scholar 

  6. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing scheme. Phys. Rev. A 69, 052307 (2004)

    ADS  Google Scholar 

  7. Brown, K.L., Horsman, C., Kendon, V., Munro, W.J.: Layer-by-layer generation of cluster states. Phys. Rev. A 85, 052305 (2012)

    ADS  Google Scholar 

  8. Inaba, K., Tokunaga, Y., Tamaki, K., Igeta, K., Yamashita, M.: High-fidelity cluster state generation for ultracold atoms in an optical lattice. Phys. Rev. Lett. 112, 110501 (2014)

    ADS  Google Scholar 

  9. Kobayashi, T., et al.: Universal gates for transforming multipartite entangled Dicke states. New J. Phys. 16, 023005 (2014)

    ADS  Google Scholar 

  10. Vyshnevyy, A.A., Lesovik, G.B., Jonckheere, T., Martin, T.: Setup of three Mach–Zehnder interferometers for production and observation of Greenberger–Horne–Zeilinger entanglement of electrons. Phys. Rev. B 87, 165417 (2013)

    ADS  Google Scholar 

  11. Perez-Leija, A., et al.: Generating photon-encoded W states in multiport waveguide-array systems. Phys. Rev. A 87, 013842 (2013)

    ADS  Google Scholar 

  12. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    ADS  MathSciNet  Google Scholar 

  13. Li, Y.H., Nie, Y.Y.: Quantum information splitting of an arbitrary three-atom state by using W-class states in cavity QED. Commun. Theor. Phys. 57, 995–998 (2012)

    ADS  MATH  MathSciNet  Google Scholar 

  14. Joo, J., Lee, J., Jang, J., Park, Y.J.: Quantum Secure Communication with W States, arXiv:quant-ph/0204003v2 (2002)

  15. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999)

    ADS  Google Scholar 

  16. D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states. Quantum Inf. Comput. 6, 173–183 (2006)

    MATH  MathSciNet  Google Scholar 

  17. Ozaydin, F.: Phase damping destroys quantum Fisher information of W states. Phys. Lett. A 378, 3161–3164 (2014)

    ADS  Google Scholar 

  18. Wu, X.Y., Cai, Y., Yang, T.H., Le, H.N., Bancal, J.D., Scarani, V.: Robust self-testing of the three-qubit W state. Phys. Rev. A 90, 042339 (2014)

    ADS  Google Scholar 

  19. Ng, H.T., Kim, K.: Quantum estimation of magnetic-field gradient using W-state. Opt. Commun. 331, 353–358 (2014)

    ADS  Google Scholar 

  20. Mi, S.C., Wang, C., Wang, T.J.: Hyperentanglement purification with linear optics assisted by W-states. Quantum Inf. Process. doi:10.1007/s11128-014-0878-8

  21. Lu, P.M., Xia, Y., Song, J., Song, H.S.: Linear optical protocol for generation of W state within a network. Int. J. Quantum Inf. 8, 1199–1206 (2010)

    MATH  Google Scholar 

  22. Yu, N.K., Guo, C., Duan, R.Y.: Obtaining a W state from a Greenberger–Horne–Zeilinger state via stochastic local operations and classical Communication with a rate approaching unity. Phys. Rev. Lett. 112, 160401 (2014)

    ADS  Google Scholar 

  23. Paul, S., Thyagarajan, K.: Generation of N-partite single and two photon W states with enhanced tolerance using waveguide arrays. J. Opt. 16, 105503 (2014)

    ADS  Google Scholar 

  24. Gräfe, M., et al.: On-chip generation of high-order single-photon W-states. Nat. Photonics 8, 791–795 (2014)

    ADS  Google Scholar 

  25. Sheng, Y.B., Liu, J., Zhao, S.Y., Wang, L., Zhou, L.: Entanglement concentration for W-type entangled coherent states. Chin. Phys. B 23, 080305 (2014)

    ADS  Google Scholar 

  26. Zang, X.P., Yang, M., Wu, W.F., Fang, S.D., Cao, Z.L.: Local expansion of atomic W state in cavity quantum electrodynamics. Indian J. Phys. 88, 1141–1145 (2014)

    ADS  Google Scholar 

  27. Zang, X.P., Yang, M., Wang, X.C., Song, W., Cao, Z.L.: Fusion of W states in Cavity QED system. Can. J. Phys. doi:10.1139/cjp-2014-0096

  28. Tashima, T., Ozdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Elementary optical gate for expanding an entanglement web. Phys. Rev. A 77, 030302 (2008)

    ADS  Google Scholar 

  29. Tashima, T., Ozdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Local expansion of photonic W state using a polarization-dependent beamsplitter. New J. Phys. 11, 023024 (2009)

    ADS  Google Scholar 

  30. Tashima, T., et al.: Demonstration of local expansion toward large-scale entangled webs. Phys. Rev. Lett. 105, 210503 (2010)

    ADS  Google Scholar 

  31. Tashima, T., Wakatsuki, T., Ozdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Local transformation of two Einstein–Podolsky–Rosen photon pairs into a three-photon W state. Phys. Rev. Lett. 102, 130502 (2009)

    ADS  MathSciNet  Google Scholar 

  32. Ozdemir, S.K., Matsunaga, E., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: An optical fusion gate for W-states. New J. Phys. 13, 103003 (2011)

    ADS  Google Scholar 

  33. Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the W-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87, 032331 (2013)

    ADS  Google Scholar 

  34. Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic W or Bell states. Quant. Inf. Process. 12, 2965 (2013)

    ADS  MATH  MathSciNet  Google Scholar 

  35. Ozaydin, F., Bugu, S., Yesilyurt, C., Altintas, A.A., Tame, M., Ozdemir, S.K.: Fusing multiple W states simultaneously with a Fredkin gate. Phys. Rev. A 89, 042311 (2014)

    ADS  Google Scholar 

  36. Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot-microcavity coupled system. Phys. Rev. A 87, 062337 (2013)

    ADS  Google Scholar 

  37. Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    ADS  Google Scholar 

  38. Imoto, N., Haus, H.A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287 (1985)

    ADS  Google Scholar 

  39. Louis, S.G.R., Nemoto, K., Munro, W.J., et al.: The efficiencies of generating cluster states with weak nonlinearities. New J. Phys. 9, 193 (2007)

    ADS  Google Scholar 

  40. Polzik, E.S., Carri, J., Kimble, H.J.: Spectroscopy with squeezed light. Phys. Rev. Lett. 68, 3020–3023 (1992)

    ADS  Google Scholar 

  41. Boyd, R.W.: Order-of-magnitude estimates of the nonlinear optical susceptibility. J. Mod. Opt. 46, 367–378 (1999)

    ADS  Google Scholar 

  42. Kok, P., Lee, H., Dowling, J.P.: Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66, 063814 (2002)

    ADS  Google Scholar 

  43. Munro, W.J., Nemoto, K., Beausoleil, R.G., et al.: High-efficiency quantum-nondemolition single-photon-number-resolving detector. Phys. Rev. A 71, 033819 (2005)

    ADS  Google Scholar 

  44. Barrett, S.D., Kok, P., Nemoto, K., et al.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)

    ADS  Google Scholar 

  45. Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)

    ADS  Google Scholar 

  46. Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

    ADS  Google Scholar 

  47. Zhu, M.Z., Zhao, C.R., Ye, L.: Highly efficient scheme for the preparation of four-photon polarization entangled state via quantum non-demolition measurement with classical feed-forward. Opt. Commun. 284, 5394–5397 (2011)

    ADS  Google Scholar 

  48. Barrett, S.D., Milburn, G.J.: Quantum-information processing via a lossy bus. Phys. Rev. A 74, 060302 (2006)

    ADS  Google Scholar 

  49. Jeong, H.: Quantum computation using weak nonlinearities: robustness against decoherence. Phys. Rev. A 73, 052320 (2006)

    ADS  Google Scholar 

  50. Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)

    ADS  Google Scholar 

  51. Borri, P., Langbein, W., Schneider, S., Woggon, U., Sellin, R.L., Ouyang, D., Bim-berg, D.: Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87, 157401 (2001)

    ADS  Google Scholar 

  52. Birkedal, D., Leosson, K., Hvam, J.M.: Long lived coherence in self-assembled quantum dots. Phys. Rev. Lett. 87, 227401 (2001)

    ADS  Google Scholar 

  53. Langbein, W., Borri, P., Woggon, U., Stavarache, V., Reuter, D., Wieck, A.D.: Radiatively limited dephasing in InAs quantum dots. Phys. Rev. B 70, 033301 (2004)

    ADS  Google Scholar 

  54. Brunner, D., Gerardot, B.D., Dalgarno, P.A., Wüst, G., Karrai, K., Stoltz, N.G., Petroff, P.M., Warburton, R.J.: A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11074002 and 61275119), by the Doctoral Foundation of the Ministry of Education of China (Grant No. 20103401110003), and also by the Natural Science Research Project of Education Department of Anhui Province of China (Grant Nos. KJ2013A205, KJ2011ZD07 and KJ2012Z309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Yang, J. & Ye, L. Realizing an efficient fusion gate for W states with cross-Kerr nonlinearities and QD-cavity coupled system. Quantum Inf Process 14, 1933–1946 (2015). https://doi.org/10.1007/s11128-015-0977-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0977-1

Keywords

Navigation