Skip to main content
Log in

A quantum optical firewall based on simple quantum devices

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In order to enhance the transmission security in quantum communications via coherent states, we propose a quantum optical firewall device to protect a quantum cryptosystem against eavesdropping through optical attack strategies. Similar to the classical model of the firewall, the proposed device gives legitimate users the possibility of filtering, controlling (input/output states) and making a decision (access or deny) concerning the traveling states. To prove the security and efficiency of the suggested optical firewall, we analyze its performances against the family of intercept and resend attacks, especially against one of the most prominent attack schemes known as “Faked State Attack.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dirac, P.A.M.: The Principles of Quantum Mechanics, 3rd edn. Clarendon Press, Oxford (1947)

    MATH  Google Scholar 

  2. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982). doi:10.1038/299802a0

    Article  ADS  Google Scholar 

  3. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982)

    Article  ADS  Google Scholar 

  4. Linares, L.-A., Kurtsiefer, C.: Breaking a quantum key distribution system through a timing side channel. Opt. Express 15, 9388–9393 (2007)

    Article  ADS  Google Scholar 

  5. Nauerth, S., Fürst, M., Schmitt-Manderbach, T., Weier, H., Weinfurter, H.: Information leakage via side channels in freespace BB84 quantum cryptography. New J. Phys. 11, 065001 (2009)

    Article  ADS  Google Scholar 

  6. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)

    Article  ADS  Google Scholar 

  7. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  8. Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)

    Article  ADS  Google Scholar 

  9. Qi, B., Fung, C.-H.F., Lo, H.-K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quant. Inf. Comp. 7, 73,2 (2007)

    MathSciNet  Google Scholar 

  10. Makarov, V., Hjelme, D.R.: Faked states attack on quantum cryptosystems. J. Mod. Opt. 52, 691–705 (2005)

    Article  ADS  Google Scholar 

  11. Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022313 (2006)

    Article  ADS  Google Scholar 

  12. Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009)

    Article  ADS  Google Scholar 

  13. Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key- distribution systems. Phys. Rev. A 78, 042333 (2008)

    Article  ADS  Google Scholar 

  14. Liu, A.X., Gouda, M.G.: Diverse firewall design. Parallel Distrib. Syst. IEEE Trans. 19(9), 1237–1251 (2008). doi:10.1109/TPDS.2007.70802

    Article  Google Scholar 

  15. Jou, Y.F., Gong, F., Sargor, C., Wu, X.: Design and implementation of a scalable intrusion detection system for the protection of network infrastructure. DARPA Information Survivability Conference and Exposition, 2000. DISCEX ’00. Proceedings (IEEE Transactions), 2, 69–83 (2000). doi:10.1109/DISCEX.2000.821510

  16. Kollmitzer, C., Pivk, M. (eds.): Applied Quantum Cryptography, Lecture Notes in Physics, vol. 797. Springer, Berlin, Heidelberg (2010)

  17. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

  18. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  20. Lo, H.L., Preskill, J.: Security of quantum key distribution using weak coherent states with nonrandom phases. Quant. Inf. Comp. 7, 431, 58 (2007)

    MathSciNet  Google Scholar 

  21. Andersson, E., Curty, M., Jex, I.: Experimentally realizable quantum comparison of coherent states and its applications. Phys. Rev. A 74, 022304 (2007). 2006

    Article  ADS  Google Scholar 

  22. Ivanovic, I.D.: Phys. Lett. A 123, 257 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  23. El Allati, A., El Baz, M.: Opt. Quant. Electron. doi:10.1007/s11082-014-9959-2

  24. Allati, A., Hassouni, Y., Metwally, N.: Phys. Scr. 83, 065002 (2011)

    Article  ADS  Google Scholar 

  25. Meslouhi, A., Amellal, H., Hassouni, Y., El Allati, A.: J. Russian Laser Res. doi:10.1007/s10946-014-9438-z

  26. Allati, A., Baz, M., Hassouni, Y.: Quant. Inf. Process. 10, 589 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Amellal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amellal, H., Meslouhi, A., Hassouni, Y. et al. A quantum optical firewall based on simple quantum devices. Quantum Inf Process 14, 2617–2633 (2015). https://doi.org/10.1007/s11128-015-1002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1002-4

Keywords

Navigation