Skip to main content
Log in

Generation and stabilization of entanglement in a cascaded atoms–cavity system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We discuss the generation and stabilization of entanglement between two distant atoms in a driven cascaded two-cavity system with homodyne-based feedback control. As the scheme works freely, the two atoms can fall into a steady state close to the Bell state \(\left| \varPhi _{+}\right\rangle \) with an amount of entanglement inverse to its decay rate in a narrow parameter region. The homodyne feedback enlarges this region and makes the system robust against the unexpected imperfections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Cirac, J.I., Zoller, P.: Preparation of macroscopic superpositions in many-atom systems. Phys. Rev. A 50, R2799 (1994)

    Article  ADS  Google Scholar 

  3. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Cabrillo, C., Cirac, J.I., Garcia-Fernandez, P., Zoller, P.: Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025 (1999)

    Article  ADS  Google Scholar 

  5. Cho, J., Angelakis, D.G., Bose, S.: Heralded generation of entanglement with coupled cavities. Phys. Rev. A 78, 022323 (2008)

    Article  ADS  Google Scholar 

  6. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  7. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)

    Article  ADS  Google Scholar 

  8. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  9. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  10. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493(R) (1995)

    Article  ADS  Google Scholar 

  11. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Kastoryano, M.J., Reiter, F., Sørensen, A.S.: Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502 (2011)

    Article  ADS  Google Scholar 

  13. Busch, J., De, S., Ivanov, S.S., Torosov, B.T., Spiller, T.P., Beige, A.: Cooling atom–cavity systems into entangled states. Phys. Rev. A 84, 022316 (2011)

    Article  ADS  Google Scholar 

  14. Shen, L.T., Chen, X.Y., Yang, Z.B., Wu, H.Z., Zheng, S.B.: Steady-state entanglement for distant atoms by dissipation in coupled cavities. Phys. Rev. A 84, 064302 (2011)

    Article  ADS  Google Scholar 

  15. Plenio, M.B., Huelga, S.F., Beige, A., Knight, P.L.: Cavity-loss-induced generation of entangled atoms. Phys. Rev. A 59, 2468 (1999)

    Article  ADS  Google Scholar 

  16. Poyatos, J.F., Cirac, J.I., Zoller, P.: Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 4728 (1996)

    Article  ADS  Google Scholar 

  17. Aron, C., Kulkarni, M., Türeci, H.E.: Steady-state entanglement of spatially separated qubits via quantum bath engineering. Phys. Rev. A 90, 062305 (2014)

    Article  ADS  Google Scholar 

  18. Ota, Y., Ashhab, S., Nori, F.: Entanglement amplification via local weak measurements. J. Phys. A Math. Theor. 45, 415303 (2012)

    Article  MathSciNet  Google Scholar 

  19. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  20. Wiseman, H.M., Milburn, G.J.: Quantum theory of optical feedback via homodyne detection. Phys. Rev. Lett. 70, 548 (1993)

    Article  ADS  Google Scholar 

  21. Wiseman, H.M.: Quantum theory of continuous feedback. Phys. Rev. A 49, 2133 (1994)

    Article  ADS  Google Scholar 

  22. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  23. Wang, J., Wiseman, H.M., Milburn, G.J.: Dynamical creation of entanglement by homodyne-mediated feedback. Phys. Rev. A 71, 042309 (2005)

    Article  ADS  Google Scholar 

  24. Liu, Z., Kuang, L.L., Hu, K., Xu, L.T., Wei, S.H., Guo, L.Z., Li, X.Q.: Deterministic creation and stabilization of entanglement in circuit QED by homodyne-mediated feedback control. Phys. Rev. A 82, 032335 (2010)

    Article  ADS  Google Scholar 

  25. Carvalho, A.R.R., Hope, J.J.: Stabilizing entanglement by quantum-jump-based feedback. Phys. Rev. A 76, 010301(R) (2007)

    Article  MathSciNet  ADS  Google Scholar 

  26. Carvalho, A.R.R., Reid, A.J.S., Hope, J.J.: Controlling entanglement by direct quantum feedback. Phys. Rev. A 78, 012334 (2008)

    Article  ADS  Google Scholar 

  27. Mancini, S., Bose, S.: Engineering an interaction and entanglement between distant atoms. Phys. Rev. A 70, 022307 (2004)

    Article  ADS  Google Scholar 

  28. Mancini, S., Wang, J.: Towards feedback control of entanglement. Eur. Phys. J. D 32, 257 (2005)

    Article  ADS  Google Scholar 

  29. Xue, D., Zou, J., Li, J.G., Chen, W.Y., Shao, B.: Controlling entanglement between two separated atoms by quantum-jump-based feedback. J. Phys. B At. Mol. Opt. Phys. 43, 045503 (2010)

    Article  ADS  Google Scholar 

  30. Ye, S.Y., Zhong, Z.R., Zheng, S.B.: Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities. Phys. Rev. A 77, 014303 (2008)

    Article  ADS  Google Scholar 

  31. Su, S.L., Shao, X.Q., Wang, H.F., Zhang, S.: Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay. Sci Rep. 4, 7566 (2014)

    Article  ADS  Google Scholar 

  32. Shao, X.Q., Zheng, T.Y., Oh, C.H., Zhang, S.: Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission. Phys. Rev. A 89, 012319 (2014)

    Article  ADS  Google Scholar 

  33. Shao, X.Q., You, J.B., Zheng, T.Y., Oh, C.H., Zhang, S.: Stationary three-dimensional entanglement via dissipative Rydberg pumping. Phys. Rev. A 89, 052313 (2014)

    Article  ADS  Google Scholar 

  34. Carmichael, H.J.: Quantum trajectory theory for cascaded open systems. Phys. Rev. Lett. 70, 2273 (1993)

    Article  ADS  Google Scholar 

  35. Clark, S., Peng, A., Gu, M., Parkins, S.: Unconditional preparation of entanglement between atoms in cascaded optical cavities. Phys. Rev. Lett. 91, 177901 (2003)

    Article  ADS  Google Scholar 

  36. Fidio, C.Di, Vogel, W.: Entanglement signature in the mode structure of a single photon. Phys. Rev. A 79, 050303(R) (2009)

    Article  Google Scholar 

  37. Parkins, A.S., Solano, E., Cirac, J.I.: Unconditional two-mode squeezing of separated atomic ensembles. Phys. Rev. Lett. 96, 053602 (2006)

    Article  ADS  Google Scholar 

  38. Fidio, C.Di, Vogel, W.: Entanglement in a Raman-driven cascaded system. Phys. Rev. A 78, 032334 (2008)

    Article  ADS  Google Scholar 

  39. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 11174040 and 11174039), Youth Foundation of Jiangxi Provincial Education Department (Grant No. GJJ14276) and Open Foundation of Key Laboratory of Photoelectronics and Telecommunication of Jiangxi Province (Grant No. 2011011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Xie or Guojian Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Wu, F., Wu, P. et al. Generation and stabilization of entanglement in a cascaded atoms–cavity system. Quantum Inf Process 14, 2477–2485 (2015). https://doi.org/10.1007/s11128-015-1010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1010-4

Keywords

Navigation