Skip to main content
Log in

Quantum controlled-not gate in the bad cavity regime

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme to synthesize atom–photon hybrid controlled-not (CNOT) gate by combining atomic single-qubit operations via stimulated Raman adiabatic passage and photonic Faraday rotation in cavity QED system. Benefiting from its hybrid characteristic, we utilize atom–photon CNOT gate to construct quantum CNOT gate for remote atoms and photons, respectively. As our scheme works in the bad cavity regime and only involves virtual excitation of atoms, it may be robust against both cavity decay and atomic spontaneous emission, thus can be realized with less demanding technology than that previously mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thompson, J.D., Tiecke, T.G., de Leon, N.P., Feist, J., Akimov, A.V., Gullans, M., Zibrov, A.S., Vuletic, V., Lukin, M.D.: Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013)

    Article  ADS  Google Scholar 

  2. Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  3. Waks, E., Vuckovic, J.: Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006)

    Article  ADS  Google Scholar 

  4. Auffeves-Garnier, A., Simon, C., Gerard, J.M., Poizat, J.P.: Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime. Phys. Rev. A 75, 053823 (2007)

    Article  ADS  Google Scholar 

  5. An, J.H., Feng, M., Oh, C.H.: Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities. Phys. Rev. A 79, 032303 (2009)

    Article  ADS  Google Scholar 

  6. Julsgaard, B., Kozhekin, A., Polzik, E.S.: Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001)

    Article  ADS  Google Scholar 

  7. Leuenberger, M.N., Flatte, M.E., Awschalom, D.D.: Teleportation of electronic many-qubit states encoded in the electron spin of quantum dots via single photons. Phys. Rev. Lett. 94, 107401 (2005)

    Article  ADS  Google Scholar 

  8. Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    Article  ADS  Google Scholar 

  9. Hu, C.Y., Munro, W.J., Rarity, J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008)

    Article  ADS  Google Scholar 

  10. Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

    Article  ADS  Google Scholar 

  11. Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)

    Article  ADS  Google Scholar 

  12. Chen, Q., Yang, W., Feng, M., Du, J.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83, 054305 (2011)

    Article  ADS  Google Scholar 

  13. Mu, Q.X., Ma, Y.H., Zhou, L.: Output squeezing and entanglement generation from a single atom with respect to a low-Q cavity. Phys. Rev. A 81, 024301 (2010)

    Article  ADS  Google Scholar 

  14. Chen, Q., Feng, M.: Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process. Phys. Rev. A 79, 064304 (2009)

    Article  ADS  Google Scholar 

  15. Mei, F., Yu, Y.F., Feng, X.L., Zhang, Z.M., Oh, C.H.: Quantum entanglement distribution with hybrid parity gate. Phys. Rev. A 82, 052315 (2010)

    Article  ADS  Google Scholar 

  16. Peng, Z.H., Zou, J., Liu, X.J., Xiao, Y.J., Kuang, L.M.: Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys. Rev. A 86, 034305 (2012)

    Article  ADS  Google Scholar 

  17. Peng, Z.H., Zou, J., Liu, X.J., Kuang, L.M.: Optimal entanglement concentration via photonic Faraday rotation in cavity QED. Opt. Commun. 313, 365–368 (2014)

    Article  ADS  Google Scholar 

  18. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  19. Munro, W.J., Van Meter, R., Louis, S.G.R., Nemoto, K.: High-bandwidth hybrid quantum repeater. Phys. Rev. Lett. 101, 040502 (2008)

    Article  ADS  Google Scholar 

  20. van Loock, P., Ladd, T.D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W.J., Yamamoto, Y.: Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006)

    Article  Google Scholar 

  21. Zhou, Y.L., Li, C.Z.: Robust quantum gates via a photon triggering electromagnetically induced transparency. Phys. Rev. A 84, 044304 (2011)

    Article  ADS  Google Scholar 

  22. Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    Article  ADS  Google Scholar 

  23. Kim, H., Bose, R., Shen, T.C., Solomon, G.S., Waks, E.: A quantum logic gate between a solid-state quantum bit and a photon. Nat Photon 7, 373–377 (2013)

    Article  ADS  Google Scholar 

  24. Colombe, Y., Steinmetz, T., Dubois, G., Linke, F., Hunger, D., Reichel, J.: Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–277 (2007)

    Article  ADS  Google Scholar 

  25. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1026 (1998)

    Article  ADS  Google Scholar 

  26. Kral, P., Thanopulos, I., Shapiro, M.: Coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53–77 (2007)

    Article  ADS  Google Scholar 

  27. Kis, Z., Renzoni, F.: Qubit rotation by stimulated Raman adiabatic passage. Phys. Rev. A 65, 032318 (2002)

    Article  ADS  Google Scholar 

  28. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  ADS  Google Scholar 

  29. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  30. Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Osnaghi, S., Bertet, P., Auffeves, A., Maioli, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902 (2001)

    Article  ADS  Google Scholar 

  32. Walls, D.F., Milburn, G.J.: Quantum Optics, 2nd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  33. Thompson, R.J., Rempe, G., Kimble, H.J.: Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992)

    Article  ADS  Google Scholar 

  34. Fan, S., Kocabas, S.E., Shen, J.T.: Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. Phys. Rev. A 82, 063821 (2010)

    Article  ADS  Google Scholar 

  35. McAuslan, D.L., Longdell, J.J., Sellars, M.J.: Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator. Phys. Rev. A 80, 062307 (2009)

    Article  ADS  Google Scholar 

  36. O’Brien, J.L., Pryde, G.J., Gilchrist, A., James, D.F.V., Langford, N.K., Ralph, T.C., White, A.G.: Quantum Process Tomography of a Controlled-NOT Gate. Phys. Rev. Lett. 93, 080502 (2004)

    Article  Google Scholar 

  37. Gilchrist, A., Lang-ford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National 973 Program (Grant No. 2013CB921804) and the National Science Foundation of China (Grants Nos. 11375060, 11274043, 11405052 and 11447221)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Hui Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, ZH., Kuang, LM., Zou, J. et al. Quantum controlled-not gate in the bad cavity regime. Quantum Inf Process 14, 2833–2846 (2015). https://doi.org/10.1007/s11128-015-1017-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1017-x

Keywords

Navigation