Skip to main content
Log in

Continuous-variable quantum key distribution under the local oscillator intensity attack with noiseless linear amplifier

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An improved continuous-variable quantum key distribution (CVQKD) protocol is proposed to improve the performance of CVQKD system under the local oscillator intensity attack by using a suitable noiseless linear amplifier (NLA) at the destination. This method can enhance the efficiency of the CVQKD scheme in terms of the maximum transmission distance, no matter whether the direct or reverse reconciliation is used. Simulation results show that there is a considerable increase in the transmission distance for the NLA-based CVQKD by adjusting the values of the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lutkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  3. Grosshans, F.: Collectiveattacks and unconditional security in continuous variable quantum key distribution. Phys. Rev. Lett. 94, 020504 (2005)

    Article  ADS  Google Scholar 

  4. García-Patrón, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)

    Article  ADS  Google Scholar 

  5. Lorenz, S., Rigas, J., Heid, M., Andersen, U.L., Lütkenhaus, N., Leuchs, G.: Witnessing effective entanglement in a continuous variable prepare-and-measure setup and application to a quantum key distribution scheme using postselection. Phys. Rev. Lett. 88, 057902 (2002)

    Article  Google Scholar 

  6. Jouguet, P., Kunz-Jacques, S., Diamanti, E., Leverrier, A.: Analysis of imperfections in practical continuous-variable quantum key distribution. Phys. Rev. A 86, 032309 (2012)

    Article  ADS  Google Scholar 

  7. Navascués, M., Grosshans, F., Acín, A.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97, 190502 (2006)

    Article  ADS  Google Scholar 

  8. Navascués, M., Acín, A.: Security bounds for continuous variables quantum key distribution. Phys. Rev. Lett. 94, 020505 (2005)

    Article  ADS  Google Scholar 

  9. Pirandola, S., Braunstein, S.L., Lloyd, S.: Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett. 101, 200504 (2008)

    Article  ADS  Google Scholar 

  10. Leverrier, A., Grangier, P.: Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 81, 062314 (2010)

    Article  ADS  Google Scholar 

  11. Weedbrook, C., Pirandola, S., García-Patrón, R., et al.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  12. Huang, P., He, G.Q., Fang, J., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87, 012317 (2013)

    Article  ADS  Google Scholar 

  13. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238 (2003)

    Article  ADS  Google Scholar 

  14. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504 (2004)

    Article  ADS  Google Scholar 

  15. Jouguet, P., Kunz-Jacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 87, 062313 (2013)

    Article  ADS  Google Scholar 

  16. Häseler, H., Moroder, T., Lütkenhaus, N.: Testing quantum devices: practical entanglement verification in bipartite optical systems. Phys. Rev. A 77, 032303 (2008)

    Article  ADS  Google Scholar 

  17. Ma, X.C., Sun, S.H., Jiang, M.S., Liang, L.M.: Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A 88, 022339 (2013)

    Article  ADS  Google Scholar 

  18. Xu, B.J., Tang, C.M., Chen, H., Zhang, Z.W., Zhu, F.C.: Improving the maximum transmission distance of four-state continuous-variable quantum key distribution by using a noiseless linear amplifier. Phys. Rev. A 87, 062311 (2013)

    Article  ADS  Google Scholar 

  19. Blandino, R., Leverrier, A., Barbieri, M., Etesse, J., Grangier, P., Tualle-Brouri, R.: Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Phys. Rev. A 86, 012327 (2012)

    Article  ADS  Google Scholar 

  20. Ferreyrol, F., Barbieri, M., Blandino, R., Fossier, S., Tualle-Brouri, R., Grangier, P.: Implementation of a nondeterministic optical noiseless amplifier. Phys. Rev. Lett. 104, 123603 (2010)

    Article  ADS  Google Scholar 

  21. Ralph, T.C.: Quantum error correction of continuous-variable states against Gaussian noise. Phys. Rev. A 84, 022339 (2011)

    Article  ADS  Google Scholar 

  22. Ferreyrol, F., Blandino, R., Barbieri, M., Tualle-Brouri, R., Grangier, P.: Experimental realization of a nondeterministic optical noiseless amplifier. Phys. Rev. A 83, 063801 (2011)

    Article  ADS  Google Scholar 

  23. Barbieri, M., Ferreyrol, F., Blandino, R., Tualle-Brouri, R., Grangier, P.: Nondeterministic noiseless amplification of optical signals: a review of recent experiments. Laser Phys. Lett. 8, 411 (2011)

    Article  ADS  Google Scholar 

  24. Kocsis, S., Xiang, G.Y., Ralph, T.C., Pryde, G.J.: Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 9, 23 (2012)

    Article  Google Scholar 

  25. Zavatta, A., Fiurasek, J., Bellini, M.: A high-fidelity noiseless amplifier for quantum light states. Nat. Photonics 5, 52 (2011)

    Article  ADS  Google Scholar 

  26. Xiang, G.Y., Ralph, T.C., Lund, A.P., Walk, N., Pryde, G.J.: Heralded noiseless linear amplification and distillation of entanglement. Nat. Photonics 4, 316 (2010)

    Article  Google Scholar 

  27. Fiurášek, J., Cerf, N.: Gaussian postselection and virtual noiseless amplification in continuous-variable quantum key distribution. Phys. Rev. A 86, 060302 (2012)

    Article  ADS  Google Scholar 

  28. Walk, N., Ralph, T.C., Symul, T., Lam, P.K.: Security of continuous-variable quantum cryptography with Gaussian postselection. Phys. Rev. A 87, 020303 (2013)

    Article  ADS  Google Scholar 

  29. Chrzanowski, H.M., Walk, N., Assad, S.M., Janousek, J., Hosseini, S., Ralph, T.C., et al.: Measurement-based noiseless linear amplification for quantum communication. Nat. Photonics 8, 333 (2014)

    Article  ADS  Google Scholar 

  30. Raymer, M.G., Cooper, J., Carmichael, H.J., Beck, M., Smithey, D.T.: Ultrafast measurement of optical-field statistics by dc-balanced homodyne detection. J. Opt. Soc. Am. B 12, 1801 (1995)

    Article  ADS  Google Scholar 

  31. Weedbrook, C.: Continuous-variable quantum key distribution with entanglement in the middle. Phys. Rev. A 87, 022308 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, 61401519, 61402542 ), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-11-0510).

Conflict of interest

Authors Fangli Yang, Ronghua Shi, Ying Guo, Jinjing Shi and Guihua Zeng declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangli Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Shi, R., Guo, Y. et al. Continuous-variable quantum key distribution under the local oscillator intensity attack with noiseless linear amplifier. Quantum Inf Process 14, 3041–3056 (2015). https://doi.org/10.1007/s11128-015-1020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1020-2

Keywords

Navigation