Skip to main content
Log in

Efficient entanglement concentration for partially entangled cluster states with weak cross-Kerr nonlinearity

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose an optimal entanglement concentration protocol (ECP) for partially entangled cluster states with the help of the weak cross-Kerr nonlinearity. We can obtain the maximally entangled cluster states assisted with the projection measurements on the additional photons. The protocol is based on optical elements, single polarization photons, cross-Kerr nonlinearity, and the conventional photon detectors, which are feasible with existing experimental technology. Numerical simulation demonstrates that by iterating the entanglement concentration process \(n=m=6\) times, the ECP has the approximate maximal success probability 100 %. Moreover, the present protocol is also suitable for partially entangled \(4N\)-photon cluster states concentration. All these advantages make this protocol more efficient and more convenient than others in the applications in quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  5. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  6. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  7. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  8. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  9. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  10. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  11. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  12. Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)

    Article  ADS  Google Scholar 

  13. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  14. Pan, J.W., Gasparonl, S., Ursin, R., Weihs, G., Zellinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature (London) 423, 417 (2003)

    Article  ADS  Google Scholar 

  15. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric downconversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  16. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  17. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  18. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)

    Article  ADS  Google Scholar 

  19. Deng, F.G.: One step error correction for multipartite polarization entanglement. Phys. Rev. A 83, 062316 (2011)

    Article  ADS  Google Scholar 

  20. Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

  21. Wang, C., Zhang, Y., Jin, G.S.: Polarization-entanglement purification and concentration using cross-Kerr nonlinearity. Quantum Inf. Comput. 11, 0988 (2011)

    MathSciNet  Google Scholar 

  22. Deng, F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011)

    Article  ADS  Google Scholar 

  23. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  24. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)

    Article  ADS  Google Scholar 

  25. Shi, B.S., Jiang, Y.K., Guo, G.C.: Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62, 054301 (2000)

    Article  ADS  Google Scholar 

  26. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  27. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  28. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  29. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  30. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Single-photon entanglement concentration for long-distance quantum communication. Quantum Inf. Comput. 10, 0272 (2010)

    MathSciNet  Google Scholar 

  31. Sheng, Y.B., Zhou, L., Zhou, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  32. Zhou, L., Sheng, Y.B., Cheng, W.Wen, Gong, L.Y., Zhao, S.Mei: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  33. Binayak, S.C., Arpan, D.: An entanglement concentration protocol for cluster states. Quantum Inf. Process. 12, 2577 (2013)

    Article  MathSciNet  Google Scholar 

  34. Dong, P., Xue, Z.Y., Yang, M., Cao, Z.L.: Generation of cluster states. Phys. Rev. A 73, 033818 (2006)

    Article  ADS  Google Scholar 

  35. Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52, 22 (2013)

    Article  MathSciNet  Google Scholar 

  36. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-not gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  37. Sheng, Y.B., Deng, F.G., Zhao, B.K., Wang, T.J., Zhou, H.Y.: Multipartite entanglement purification with quantum nondemolition detectors. Eur. Phys. J. D 55, 235 (2009)

    Article  ADS  Google Scholar 

  38. Sheng, Y.B., Deng, F.G., Long, G.L.: Multipartite electronic entanglement purification with charge detection. Phys. Lett. A 375, 396 (2011)

    Article  ADS  Google Scholar 

  39. Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)

    Article  ADS  Google Scholar 

  40. He, B., Lin, Q., Simon, C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83, 053826 (2011)

    Article  ADS  Google Scholar 

  41. Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79, 022301 (2009)

    Article  ADS  Google Scholar 

  42. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  43. Li, Y.M., Zhang, K.S., Peng, K.C.: Generation of qudits and entangled qudits. Phys. Rev. A 77, 015802 (2008)

    Article  ADS  Google Scholar 

  44. Jeong, H., An, N.B.: Greenberger–Horne–Zeilinger-type and W-type entangled coherent states: generation and Bell-type inequality tests without photon counting. Phys. Rev. A 74, 022104 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  45. Jin, G.S., Lin, Y., Wu, B.: Generating multiphoton Greenberger–Horne–Zeilinger states with weak cross-Kerr nonlinearity. Phys. Rev. A 75, 054302 (2007)

    Article  ADS  Google Scholar 

  46. Guo, Q., Bai, J., Cheng, L.Y., Shao, X.Q., Wang, H.F., Zhang, S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83, 054303 (2011)

    Article  ADS  Google Scholar 

  47. He, B., Bergou, J.A., Ren, Y.H.: Universal discriminator for completely unknown optical qubits. Phys. Rev. A 76, 032301 (2007)

    Article  ADS  Google Scholar 

  48. He, B., Nadeem, M., Bergou, J.A.: Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity. Phys. Rev. A. 79, 035802 (2009)

    Article  ADS  Google Scholar 

  49. He, B., Ren, Y.H., Bergou, J.A.: Creation of high-quality long-distance entanglement with flexible resources. Phys. Rev. A. 79, 052323 (2009)

    Article  ADS  Google Scholar 

  50. Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80, 042310 (2009)

    Article  ADS  Google Scholar 

  51. Lin, Q., He, B., Bergou, J.A., Ren, Y.H.: Processing multiphoton states through operation on a single photon: methods and applications. Phys. Rev. A. 80, 042311 (2009)

    Article  ADS  Google Scholar 

  52. Lin, Q., He, B.: Bi-directional mapping between polarization and spatially encoded photonic qutrits. Phys. Rev. A. 80, 062312 (2009)

    Article  ADS  Google Scholar 

  53. Lin, Q., He, B.: Addendum to single-photon logic gates using minimum resources. Phys. Rev. A. 82, 064303 (2010)

    Article  ADS  Google Scholar 

  54. Fan, L.L., Xia, Y., Song, J.: Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics. Quantum Inf. Process. 13, 1967 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  55. Ren, B.C., Du, F.F., Deng, F.G.: Practical hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  56. Kok, P., Munro, W.J., Nemoto, K.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys 79, 135 (2007)

    Article  ADS  Google Scholar 

  57. Kok, P., Lee, H., Dowling, J.P.: Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66, 063814 (2002)

    Article  ADS  Google Scholar 

  58. Shapiro, J.H.: Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006)

    Article  ADS  Google Scholar 

  59. Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010)

    Article  ADS  Google Scholar 

  60. Feizpour, A., Xing, X.X., Steinberg, A.M.: Amplifying single-photon nonlinearity using weak measurements. Phys. Rev. Lett. 107, 133603 (2011)

    Article  ADS  Google Scholar 

  61. Zhu, C., Huang, G.: Giant Kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well structures. Opt. Express 19, 23364 (2011)

    Article  ADS  Google Scholar 

  62. Pan, J.W., Bouwmeester, D., Daniell, M., Weinfurter, H., Zeilinger, A.: Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature (London) 403, 515 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants Nos. 11105030 and 11374054, the Foundation of Ministry of Education of China under Grant No. 212085, and the Major State Basic Research Development Program of China under Grant No. 2012CB921601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HJ., Fan, LL., Xia, Y. et al. Efficient entanglement concentration for partially entangled cluster states with weak cross-Kerr nonlinearity. Quantum Inf Process 14, 2909–2928 (2015). https://doi.org/10.1007/s11128-015-1029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1029-6

Keywords

Navigation