Skip to main content
Log in

Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Using four Einstein–Podolsky–Rosen (EPR) states as the shared quantum channel, we investigate the deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noisy environments through the analytical solution of the master equation in the Lindblad form. By means of unitary matrix decomposition method, quantum logic circuit for the deterministic joint remote state preparation (JRSP) protocol is first constructed. Then, we analytically derive the average fidelities of the deterministic JRSP process under the influence of Pauli noises, zero-temperature and high-temperature reservoirs acting on the four EPR pairs. It is found that the average fidelities under the action of different noises display different evolution behaviors. Moreover, for the specific noises examined in this paper, in the long-time limit, the dephasing noise and the zero-temperature environment have the relatively weak effect on their respective average fidelities, whereas the isotropic noise and the high-temperature environment have the relatively strong effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Lo, H.K.: Classical-communication cost in distributed quantum information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  3. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  5. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  6. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  7. Kurucz, Z., Adam, P., Kis, Z., Janszky, J.: Continuous variable remote state preparation. Phys. Rev. A 72, 052315 (2005)

    Article  ADS  Google Scholar 

  8. Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285 (2006)

    Article  ADS  Google Scholar 

  9. Yu, C.S., Song, H.S., Wang, Y.H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)

    Article  ADS  Google Scholar 

  10. Yan, F.L., Zhang, G.H.: Remote preparation of the two-particle state. Int. J. Quantum Inf. 6, 485 (2008)

    Article  MATH  Google Scholar 

  11. Wang, D., Liu, Y.M., Zhang, Z.J.: Remote preparation of a class of three-qubit states. Opt. Commun. 281, 871 (2008)

    Article  ADS  Google Scholar 

  12. Liu, J.M., Feng, X.L., Oh, C.H.: Remote preparation of arbitrary two- and three-qubit states. EPL 87, 30006 (2009)

    Article  ADS  Google Scholar 

  13. Solis-Prosser, M.A., Neves, L.: Remote state preparation of spatial qubits. Phys. Rev. A 84, 012330 (2011)

    Article  ADS  Google Scholar 

  14. Su, M., Chen, L.X.: Remote state preparation of three-dimensional optical vortices. Opt. Exp. 22, 10898 (2014)

    Article  ADS  Google Scholar 

  15. Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)

    Article  ADS  Google Scholar 

  16. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  17. Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)

    Article  ADS  Google Scholar 

  18. Mikami, H., Kobayashi, T.: Remote preparation of qutrit states with biphotons. Phys. Rev. A 75, 022325 (2007)

    Article  ADS  Google Scholar 

  19. Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76, 022308 (2007)

    Article  ADS  Google Scholar 

  20. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon “hybrid” entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  21. Rådmark, M., Wiesniak, M., Zukowski, M., Bourennane, M.: Experimental multilocation remote state preparation. Phys. Rev. A 88, 032304 (2013)

    Article  ADS  Google Scholar 

  22. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40, 3719 (2007)

    Article  ADS  Google Scholar 

  23. An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41, 095501 (2008)

    Article  ADS  Google Scholar 

  24. An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B At. Mol. Opt. Phys. 42, 125501 (2009)

    Article  ADS  Google Scholar 

  25. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote state preparation of an arbitrary three-qubit state. Opt. Commun. 283, 4796 (2010)

    Article  ADS  Google Scholar 

  26. Hou, K., Li, Y.B., Liu, G.H., Sheng, S.Q.: Joint remote preparation of an arbitrary two-qubit state via GHZ-type states. J. Phys. A Math. Theor. 44, 255304 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  27. Zhan, Y.B., Hu, B.L., Ma, P.C.: Joint remote preparation of four-qubit cluster-type states. J. Phys. B At. Mol. Opt. Phys. 44, 095501 (2011)

    Article  ADS  Google Scholar 

  28. Luo, M.X., Chen, X.B., Yang, Y.X., Niu, X.X.: Experimental architecture of joint remote state preparation. Quantum. Inf. Process. 11, 751 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhou, P.: Joint remote preparation of an arbitrary m-qudit state with a pure entangled quantum channel via positive operator-valued measurement. J. Phys. A Math. Theor. 45, 215305 (2012)

    Article  ADS  Google Scholar 

  30. Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B At. Mol. Opt. Phys. 44, 075501 (2011)

    Article  ADS  Google Scholar 

  31. An, N.B., Bich, C.T., Don, N.V.: Deterministic joint remote state preparation. Phys. Lett. A 375, 3570 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Chen, Q.Q., Xia, Y., Song, J.: Deterministic joint remote preparation of an arbitrary three-qubit state via EPR pairs. J. Phys. A Math. Theor. 45, 055303 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  33. Xia, Y., Chen, Q.Q., An, N.B.: Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein–Podolsky–Rosen pairs with a passive receiver. J. Phys. A. Math. Theor. 45, 335306 (2012)

    Article  Google Scholar 

  34. Bich, C.T., Don, N.V., An, N.B.: Deterministic joint remote preparation of an arbitrary qubit via Einstein–Podolsky–Rosen pairs. Int J. Theor. Phys. 51, 2272 (2012)

    Article  MATH  Google Scholar 

  35. Wang, Y., Ji, X.: Deterministic joint remote state preparation of arbitrary two- and three-qubit states. Chin. Phys. B 22, 020306 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  36. An, N.B., Bich, C.T.: Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel. Phys. Lett. A 378, 3582 (2014)

    Article  MATH  ADS  Google Scholar 

  37. Jiang, M., Zhou, L.L., Chen, X.P., You, S.H.: Deterministic joint remote preparation of general multi-qubit states. Opt. Commun. 301, 3945 (2013)

    Google Scholar 

  38. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G.: Remote state preparation via a GHZ-class state in noisy environments. J. Phys. B At. Mol. Opt. Phys. 44, 115506 (2011)

    Article  ADS  Google Scholar 

  39. Zhang, Y.L., Zhou, Q.P., Kang, G.D., Zhou, F., Wang, X.B.: Remote state preparation in non-Markovian environment. Int. J. Quantum Inf. 10, 1250030 (2012)

    Article  Google Scholar 

  40. Guan, X.W., Chen, X.B., Wang, L.C., Yang, Y.X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53, 2236 (2014)

    Article  MATH  Google Scholar 

  41. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  42. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  43. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  44. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  46. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G.: Quantum teleportation with partially entangled states via noisy channels. Quantum. Inf. Process. 12, 2671 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)

    Article  ADS  Google Scholar 

  48. Chen, Z.F., Liu, J.M., Ma, L.: Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise. Chin. Phys. B 23, 020312 (2014)

    Article  ADS  Google Scholar 

  49. Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408 (2003)

    Article  ADS  Google Scholar 

  50. Zhao, Z., Zhang, A.N., Chen, Y.A., Zhang, H., Du, J.F., Yang, T., Pan, J.W.: Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits. Phys. Rev. Lett. 94, 030501 (2005)

    Article  ADS  Google Scholar 

  51. Li, X., Wu, Y., Steel, D., Gammon, D., Stievater, T.H., Katzer, D.S., Park, D., Piermarocchi, C., Sham, L.J.: An all-optical quantum gate in a semiconductor quantum dot. Nature 301, 809 (2003)

    Google Scholar 

  52. Isenhower, L., Urban, E., Zhang, X.L., Gill, A.T., Henage, T., Johnson, T.A., Walker, T.G., Saffman, M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)

    Article  ADS  Google Scholar 

  53. Zu, C., Wang, W.B., He, L., Zhang, W.G., Dai, C.Y., Wang, F., Duan, L.M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514, 72 (2014)

    Article  ADS  Google Scholar 

  54. Salles, A., de Melo, F., Almeida, M.P., Hor-Meyll, M., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)

    Article  ADS  Google Scholar 

  55. Chiuri, A., Rosati, V., Vallone, G., Padua, S., Imai, H., Giacomini, S., Macchiavello, C., Mataloni, P.: Experimental realization of optimal noise estimation for a general Pauli channel. Phys. Rev. Lett. 107, 253602 (2011)

    Article  ADS  Google Scholar 

  56. Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7, 931 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We thanks Prof. JunHong An for his helpful suggestions. This work was supported by the National Natural Science Foundation of China under Grant Nos. 11174081, 11134003, and 11034002, and the National Basic Research Program of China under Grant Nos. 2011CB921602 and 2012CB821302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ming Liu.

Appendix: Explicit expressions of the output state at Carol’s side

Appendix: Explicit expressions of the output state at Carol’s side

a) When the four EPR states are subject to the bit-flip noise, the analytical form of \(\rho _{78}^{x}\) is given by

$$\begin{aligned} \rho _{78}^{x}= & {} 16e^{-16\gamma t}\left\{ \left[ \left( \zeta _{1}^{2}+\zeta _{2}^{2}\right) g+j_{0}\zeta _{0}^{2}+j_{1}\zeta _{3}^{2}+m_{0}^{2}m_{1}^{2}\left( \zeta _{0}^{2}+\zeta _{3}^{2}\right) \right] \left| 00\right\rangle \left\langle 00\right| \right. \nonumber \\&+\,\left( m_{0}+m_{1}\right) \left( \zeta _{0}\zeta _{1}m_{0}+\zeta _{2}\zeta _{3}m_{1}\right) \left[ e^{-i\varphi _{1}}m_{0}^{2}+e^{i\left( \varphi _{3}-\varphi _{2}\right) }m_{1}^{2}\right. \nonumber \\&+\left. \,m_{0}m_{1}\left( e^{i\varphi _{1}}+e^{i\left( \varphi _{2}-\varphi _{3}\right) }\right) \right] \left| 00\right\rangle \left\langle 01\right| \nonumber \\&+\,\left[ \left( m_{0}+m_{1}\right) \left( \zeta _{0}\zeta _{2}m_{0}+\zeta _{1}\zeta _{3}m_{1}\right) \left( e^{-i\varphi _{2}}m_{0}^{2}+e^{i\left( \varphi _{3}-\varphi _{1}\right) }m_{1}^{2}\right. \right. \nonumber \\&+\left. \left. \,m_{0}m_{1}e^{i\varphi _{2}}+m_{0}m_{1}e^{i\left( \varphi _{1}-\varphi _{3}\right) }\right) \right] \left| 00\right\rangle \left\langle 10\right| \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,\Big [\left( m_{1}^{2}e^{i\varphi _{3}}+m_{0}^{2}e^{-i\varphi _{3}}+m_{0}m_{1}e^{i\left( \varphi _{1}-\varphi _{2}\right) }\right. \nonumber \\&+\,m_{0}m_{1}e^{i\left( \varphi _{2}-\varphi _{1}\right) }\Big )\left( 2\zeta _{1}\zeta _{2}m_{0}m_{1}+\zeta _{0}\zeta _{3}m_{0}^{2}+\zeta _{0}\zeta _{3}m_{1}^{2}\right) \Big ]\left| 00\right\rangle \left\langle 11\right| \nonumber \\&+\,\left( m_{0}+m_{1}\right) \left( \zeta _{0}\zeta _{1}m_{0}+\zeta _{2}\zeta _{3}m_{1}\right) \left[ e^{i\varphi _{1}}m_{0}^{2}+e^{i\left( \varphi _{2}-\varphi _{3}\right) }m_{1}^{2}\right. \nonumber \\&+\left. \,m_{0}m_{1}\left( e^{-i\varphi _{1}}+e^{i\left( \varphi _{3}-\varphi _{2}\right) }\right) \right] \left| 01\right\rangle \left\langle 00\right| \nonumber \\&+\,\left[ \left( \zeta _{0}^{2}+\zeta _{3}^{2}\right) g+j_{0}\zeta _{1}^{2}+j_{1}\zeta _{2}^{2}+m_{0}^{2}m_{1}^{2}\left( \zeta _{1}^{2}+\zeta _{2}^{2}\right) \right] \left| 01\right\rangle \left\langle 01\right| \nonumber \\&+\,\left[ \left( m_{0}m_{1}e^{-i\varphi _{3}}+m_{0}m_{1}e^{i\varphi _{3}}+m_{0}^{2}e^{i\left( \varphi _{1}-\varphi _{2}\right) }\right. \right. \nonumber \\&+\left. \left. \,m_{1}^{2}e^{i\left( \varphi _{2}-\varphi _{1}\right) }\right) \left( 2\zeta _{0}\zeta _{3}m_{0}m_{1}+\zeta _{1}\zeta _{2}m_{0}^{2}+\zeta _{1}\zeta _{2}m_{1}^{2}\right) \right] \left| 01\right\rangle \left\langle 10\right| \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,\left[ \left( m_{0}+m_{1}\right) \left( \zeta _{1}\zeta _{3}m_{0}+\zeta _{0}\zeta _{2}m_{1}\right) \left( e^{i\varphi _{2}}m_{1}^{2}+e^{i\left( \varphi _{3}-\varphi _{1}\right) }m_{0}m_{1}\right. \right. \nonumber \\&+\left. \left. \,m_{0}m_{1}e^{-i\varphi _{2}}+m_{0}^{2}e^{i\left( \varphi _{1}-\varphi _{3}\right) }\right) \right] \left| 01\right\rangle \left\langle 11\right| \nonumber \\&+\,\left[ \left( m_{1}+m_{0}\right) \left( m_{0}^{2}e^{i\varphi _{2}}+m_{0}m_{1}e^{-i\varphi _{2}}+m_{0}m_{1}e^{i\left( \varphi _{3}-\varphi _{1}\right) }\right. \right. \nonumber \\&\left. \left. +\,m_{1}^{2}e^{i\left( \varphi _{1}-\varphi _{3}\right) }\right) \left( \zeta _{0}\zeta _{2}m_{0}+\zeta _{1}\zeta _{3}m_{1}\right) \right] \left| 10\right\rangle \left\langle 00\right| \nonumber \\&+\,\left[ \left( m_{0}m_{1}e^{i\varphi _{3}}+m_{0}m_{1}e^{-i\varphi _{3}}+m_{0}^{2}e^{i\left( \varphi _{2}-\varphi _{1}\right) }+m_{1}^{2}e^{i\left( \varphi _{1}-\varphi _{2}\right) }\right) \Big (2\zeta _{0}\zeta _{3}m_{0}m_{1}\right. \nonumber \\&\left. \left. +\,\zeta _{1}\zeta _{2}m_{0}^{2}+\zeta _{1}\zeta _{2}m_{1}^{2}\right) \right] \left| 10\right\rangle \left\langle 01\right| \nonumber \\&+\,\left[ \left( \zeta _{0}^{2}+\zeta _{3}^{2}\right) g+j_{0}\zeta _{2}^{2}+j_{1}\zeta _{1}^{2}+m_{0}^{2}m_{1}^{2}\left( \zeta _{1}^{2}+\zeta _{2}^{2}\right) \right] \left| 10\right\rangle \left\langle 10\right| \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,\left[ \left( m_{0}+m_{1}\right) \left( m_{1}^{2}e^{i\varphi _{1}}+m_{0}m_{1}e^{-i\varphi _{1}}+m_{0}m_{1}e^{i\left( \varphi _{3}-\varphi _{2}\right) }\right. \right. \nonumber \\&\left. \left. +~m_{0}^{2}e^{i\left( \varphi _{2}-\varphi _{3}\right) }\right) \left( \zeta _{2}\zeta _{3}m_{0}+\zeta _{0}\zeta _{1}m_{1}\right) \right] \left| 10\right\rangle \left\langle 11\right| \nonumber \\&+\,\left[ \left( m_{1}^{2}e^{-i\varphi _{3}}+m_{0}^{2}e^{i\varphi _{3}}+m_{0}m_{1}e^{i\left( \varphi _{2}-\varphi _{1}\right) }+m_{0}m_{1}e^{i\left( \varphi _{1}-\varphi _{2}\right) }\right) \Big (2\zeta _{1}\zeta _{2}m_{0}m_{1}\right. \nonumber \\&\left. \left. +\,\zeta _{0}\zeta _{3}m_{0}^{2}+\zeta _{0}\zeta _{3}m_{1}^{2}\right) \right] \left| 11\right\rangle \left\langle 00\right| \nonumber \\&+\,\left[ \left( m_{0}+m_{1}\right) \left( m_{1}^{2}e^{-i\varphi _{2}}+m_{0}m_{1}e^{i\varphi _{2}}+m_{0}^{2}e^{i\left( \varphi _{3}-\varphi _{1}\right) }\right. \right. \nonumber \\&\left. \left. +\,m_{0}m_{1}e^{i\left( \varphi _{1}-\varphi _{3}\right) }\right) \left( \zeta _{1}\zeta _{3}m_{0}+\zeta _{0}\zeta _{2}m_{1}\right) \right] \left| 11\right\rangle \left\langle 01\right| \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,\left[ \left( m_{0}+m_{1}\right) \left( m_{1}^{2}e^{-i\varphi _{1}}+m_{0}m_{1}e^{i\varphi _{1}}+m_{0}m_{1}e^{i\left( \varphi _{2}-\varphi _{3}\right) }\right. \right. \nonumber \\&\left. \left. +\,\,m_{0}^{2}e^{i\left( \varphi _{3}-\varphi _{2}\right) }\right) \left( \zeta _{2}\zeta _{3}m_{0}+\zeta _{0}\zeta _{1}m_{1}\right) \right] \left| 11\right\rangle \left\langle 10\right| \nonumber \\&\left. +\,\left[ \left( \zeta _{1}^{2}+\zeta _{2}^{2}\right) g+j_{0}\zeta _{3}^{2}+j_{1}\zeta _{0}^{2}+m_{0}^{2}m_{1}^{2}\left( \zeta _{0}^{2}+\zeta _{3}^{2}\right) \right] \left| 11\right\rangle \left\langle 11\right| \right\} , \end{aligned}$$
(22)

where \(m_{0}=\frac{1}{4}e^{4\gamma t}+\frac{1}{4}\), \(m_{1}=\frac{1}{4} e^{4\gamma t}-\frac{1}{4}\), \( g=m_{0}m_{1}^{3}+2m_{0}^{2}m_{1}^{2}+m_{0}^{3}m_{1}\), \( j_{0}=m_{0}^{4}+2m_{0}^{3}m_{1}\), and \(j_{1}=m_{1}^{4}+2m_{0}m_{1}^{3}\).

b) When the four EPR states are subject to the dephasing noise, the analytical form of \(\rho _{78}^{z}\) is given by

$$\begin{aligned} \rho _{78}^{z}= & {} \zeta _{0}^{2}\left| 00\right\rangle \left\langle 00\right| +\zeta _{0}\zeta _{1}e^{-8\gamma t}e^{-i\varphi _{1}}\left| 00\right\rangle \left\langle 01\right| +\zeta _{0}\zeta _{2}e^{-8\gamma t}e^{-i\varphi _{2}}\left| 00\right\rangle \left\langle 10\right| \nonumber \\&+\,\zeta _{0}\zeta _{3}e^{-16\gamma t}e^{-i\varphi _{3}}\left| 00\right\rangle \left\langle 11\right| \nonumber \\&+\,\zeta _{0}\zeta _{1}e^{-8\gamma t}e^{i\varphi _{1}}\left| 01\right\rangle \left\langle 00\right| +\zeta _{1}^{2}\left| 01\right\rangle \left\langle 01\right| +\zeta _{1}\zeta _{2}e^{-16\gamma t}e^{i\left( \varphi _{1}-\varphi _{2}\right) }\left| 01\right\rangle \left\langle 10\right| \nonumber \\&+\,\zeta _{1}\zeta _{3}e^{-8\gamma t}e^{i\left( \varphi _{1}-\varphi _{3}\right) }\left| 01\right\rangle \left\langle 11\right| \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,\zeta _{0}\zeta _{2}e^{-8\gamma t}e^{i\varphi _{2}}\left| 10\right\rangle \left\langle 00\right| +\zeta _{1}\zeta _{2}e^{-16\gamma t}e^{i\left( \varphi _{2}-\varphi _{1}\right) }\left| 10\right\rangle \left\langle 01\right| +\zeta _{2}^{2}\left| 10\right\rangle \left\langle 10\right| \nonumber \\&+\,\zeta _{2}\zeta _{3}e^{-8\gamma t}e^{i\left( \varphi _{2}-\varphi _{3}\right) }\left| 10\right\rangle \left\langle 11\right| \nonumber \\&+\,\zeta _{0}\zeta _{3}e^{-16\gamma t}e^{i\varphi _{3}}\left| 11\right\rangle \left\langle 00\right| +\zeta _{1}\zeta _{3}e^{-8\gamma t}e^{i\left( \varphi _{3}-\varphi _{1}\right) }\left| 11\right\rangle \left\langle 01\right| \nonumber \\&+\,\zeta _{2}\zeta _{3}e^{-8\gamma t}e^{i\left( \varphi _{3}-\varphi _{2}\right) }\left| 11\right\rangle \left\langle 10\right| +\zeta _{3}^{2}\left| 11\right\rangle \left\langle 11\right| . \end{aligned}$$
(23)

c) When the four EPR states are subject to the isotropic noise, the analytical form of \(\rho _{78}^{iso}\) is given by

$$\begin{aligned} \rho _{78}^{iso}= & {} e^{-\frac{32}{\sqrt{3}}\gamma t}\left\{ \left[ 16\left( \zeta _{1}^{2}+\zeta _{2}^{2}\right) \left( n_{0}^{3}n_{1}+n_{0}n_{1}^{3}+2n_{0}^{2}n_{1}^{2}\right) +16\zeta _{0}^{2}(n_{0}^{4}+2n_{0}^{3}n_{1}) \nonumber \right. \right. \\&\left. +\,16\zeta _{3}^{2}(n_{1}^{4}+2n_{0}n_{1}^{3})+16n_{0}^{2}n_{1}^{2}\left( \zeta _{0}^{2}+\zeta _{3}^{2}\right) \right] \left| 00\right\rangle \left\langle 00\right| +4(\zeta _{0}\zeta _{1}n_{0}+\zeta _{2}\zeta _{3}n_{1})\nonumber \\&\,\qquad \left( e^{-i\varphi _{1}}n_{0}+e^{i\left( \varphi _{2}-\varphi _{3}\right) }n_{1}\right) \left| 00\right\rangle \left\langle 01\right| \nonumber \\&+\,\,4\left( \zeta _{0}\zeta _{2}n_{0}+\zeta _{1}\zeta _{3}n_{1}\right) \left( e^{-i\varphi _{2}}n_{0}+e^{i(\varphi _{1}-\varphi _{3})}n_{1}\right) \left| 00\right\rangle \left\langle 10\right| +\zeta _{0}\zeta _{3}e^{-i\varphi _{3}}\left| 00\right\rangle \left\langle 11\right| \nonumber \\&+\,\,4\left( \zeta _{0}\zeta _{1}n_{0}+\zeta _{2}\zeta _{3}n_{1}\right) \left( e^{i\varphi _{1}}n_{0}+e^{i\left( \varphi _{3}-\varphi _{2}\right) }n_{1}\right) \left| 01\right\rangle \left\langle 00\right| \nonumber \\&+\,\left[ 16\left( \zeta _{0}^{2}+\zeta _{3}^{2}\right) \left( n_{0}^{3}n_{1}+n_{0}n_{1}^{3}+2n_{0}^{2}n_{1}^{2}\right) \right. \nonumber \\&+\left. \,16\zeta _{1}^{2}\left( n_{0}^{4}+2n_{0}^{3}n_{1}\right) +16\zeta _{2}^{2}(n_{1}^{4}+2n_{0}n_{1}^{3})+16n_{0}^{2}n_{1}^{2}\left( \zeta _{1}^{2}+\zeta _{2}^{2}\right) \right] \left| 01\right\rangle \left\langle 01\right| \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,\zeta _{1}\zeta _{2}e^{i\left( \varphi _{1}-\varphi _{2}\right) }\left| 01\right\rangle \left\langle 10\right| +4\left( \zeta _{0}\zeta _{2}n_{1}+\zeta _{1}\zeta _{3}n_{0}\right) \left( e^{-i\varphi _{2}}n_{1}+e^{i\left( \varphi _{1}-\varphi _{3}\right) }n_{0}\right) \left| 01\right\rangle \left\langle 11\right| \nonumber \\&+~4\left( \zeta _{0}\zeta _{2}n_{0}+\zeta _{1}\zeta _{3}n_{1}\right) \left( e^{i\varphi _{2}}n_{0}+e^{i\left( \varphi _{3}-\varphi _{1}\right) }n_{1}\right) \left| 10\right\rangle \left\langle 00\right| +\zeta _{1}\zeta _{2}e^{i\left( \varphi _{2}-\varphi _{1}\right) }\left| 10\right\rangle \left\langle 01\right| \nonumber \\&+\,\left[ 16\left( \zeta _{0}^{2}+\zeta _{3}^{2}\right) \left( n_{0}^{3}n_{1}+n_{0}n_{1}^{3}+2n_{0}^{2}n_{1}^{2}\right) +16\zeta _{1}^{2}\left( n_{1}^{4}+2n_{0}n_{1}^{3}\right) \right. \nonumber \\&+\,16\zeta _{2}^{2}\left( n_{0}^{4}+2n_{0}^{3}n_{1}\right) \nonumber \\&+\left. \,16n_{0}^{2}n_{1}^{2}\left( \zeta _{1}^{2}+\zeta _{2}^{2}\right) \right] \left| 10\right\rangle \left\langle 10\right| +4\left( \zeta _{0}\zeta _{1}n_{1}+\zeta _{2}\zeta _{3}n_{0}\right) \nonumber \\&\times \left( e^{-i\varphi _{1}}n_{1}+e^{i\left( \varphi _{2}-\varphi _{3}\right) }n_{0}\right) \left| 10\right\rangle \left\langle 11\right| \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,\zeta _{0}\zeta _{3}e^{i\varphi _{3}}\left| 11\right\rangle \left\langle 00\right| +4\left( \zeta _{0}\zeta _{2}n_{1}+\zeta _{1}\zeta _{3}n_{0}\right) \left( e^{i\varphi _{2}}n_{1}+e^{i\left( \varphi _{3}-\varphi _{1}\right) }n_{0}\right) \left| 11\right\rangle \left\langle 01\right| \nonumber \\&+\,\,4\left( \zeta _{0}\zeta _{1}n_{1}+\zeta _{2}\zeta _{3}n_{0}\right) \left( e^{i\varphi _{1}}n_{1}+e^{i\left( \varphi _{3}-\varphi _{2}\right) }n_{0}\right) \left| 11\right\rangle \left\langle 10\right| \nonumber \\&+\,\left[ 16\left( \zeta _{1}^{2}+\zeta _{2}^{2}\right) \left( n_{0}^{3}n_{1}+n_{0}n_{1}^{3}+2n_{0}^{2}n_{1}^{2}\right) \right. \nonumber \\&\left. \left. +\,16\zeta _{0}^{2}\left( n_{1}^{4}+2n_{0}n_{1}^{3}\right) +16\zeta _{3}^{2}\left( n_{0}^{4}+2n_{0}^{3}n_{1}\right) +16n_{0}^{2}n_{1}^{2}\left( \zeta _{0}^{2}+\zeta _{3}^{2}\right) \right] \left| 11\right\rangle \left\langle 11\right| \right\} ,\nonumber \\ \end{aligned}$$
(24)

where \(n_{0}=\frac{1}{4}e^{\frac{8}{\sqrt{3}}\gamma t}+\frac{1}{4}\) and \( n_{1}=\frac{1}{4}e^{\frac{8}{\sqrt{3}}\gamma t}-\frac{1}{4}.\)

d) When the four EPR states are subject to high-temperature environment, the analytical form of \(\rho _{78}^{high}\) is given by

$$\begin{aligned} \rho _{78}^{high}= & {} 16e^{-16\gamma t}\left[ \zeta _{0}^{2}\left( f_{0}^{4}+2f_{1}f_{0}^{3}+f_{1}^{2}f_{0}^{2}\right) +\left( \zeta _{1}^{2}+\zeta _{2}^{2}\right) \left( f_{0}f_{1}^{3}+f_{1}f_{0}^{3}+2f_{1}^{2}f_{0}^{2}\right) \right. \nonumber \\&\left. +\,\zeta _{3}^{2}\left( f_{1}^{4}+2f_{0}f_{1}^{3}+f_{1}^{2}f_{0}^{2}\right) \right] \left| 00\right\rangle \left\langle 00\right| \nonumber \\&+\,\left[ 4e^{-12\gamma t}\left( f_{0}\zeta _{0}\zeta _{1}+f_{1}\zeta _{2}\zeta _{3}\right) \left( f_{0}e^{-i\varphi _{1}}+f_{1}e^{i\left( \varphi _{2}-\varphi _{3}\right) }\right) \right] \left| 00\right\rangle \left\langle 01\right| \nonumber \\&+\,\left[ 4e^{-12\gamma t}\left( f_{0}\zeta _{0}\zeta _{2}+f_{1}\zeta _{1}\zeta _{3}\right) \left( f_{0}e^{-i\varphi _{2}}+f_{1}e^{i\left( \varphi _{1}-\varphi _{3}\right) }\right) \right] \left| 00\right\rangle \left\langle 10\right| \nonumber \\&+\,\zeta _{0}\zeta _{3}e^{-i\varphi _{3}}e^{-8\gamma t}\left| 00\right\rangle \left\langle 11\right| \nonumber \\&+\,\left[ 4e^{-12\gamma t}\left( f_{0}\zeta _{0}\zeta _{1}+f_{1}\zeta _{2}\zeta _{3}\right) \left( f_{0}e^{i\varphi _{1}}+f_{1}e^{i\left( \varphi _{3}-\varphi _{2}\right) }\right) \right] \left| 01\right\rangle \left\langle 00\right| \nonumber \\&+\,16e^{-16\gamma t}\left[ \zeta _{1}^{2}\left( f_{0}^{4}+2f_{1}f_{0}^{3}+f_{1}^{2}f_{0}^{2}\right) \right. \nonumber \\&\left. +\,\left( \zeta _{0}^{2}+\zeta _{3}^{2}\right) \left( f_{0}f_{1}^{3}+f_{1}f_{0}^{3}+2f_{1}^{2}f_{0}^{2}\right) +\zeta _{2}^{2}\left( f_{1}^{4}+2f_{0}f_{1}^{3}+f_{1}^{2}f_{0}^{2}\right) \right] \left| 01\right\rangle \left\langle 01\right| \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,\zeta _{1}\zeta _{2}e^{i\left( \varphi _{1}-\varphi _{2}\right) }e^{-8\gamma t}\left| 01\right\rangle \left\langle 10\right| \nonumber \\&+\,\left[ 4e^{-12\gamma t}\left( f_{1}\zeta _{0}\zeta _{2}+f_{0}\zeta _{1}\zeta _{3}\right) \left( f_{1}e^{-i\varphi _{2}}+f_{0}e^{i\left( \varphi _{1}-\varphi _{3}\right) }\right) \right] \left| 01\right\rangle \left\langle 11\right| \nonumber \\&+\,\left[ 4e^{-12\gamma t}\left( f_{0}\zeta _{0}\zeta _{2}+f_{1}\zeta _{1}\zeta _{3}\right) \left( f_{0}e^{i\varphi _{2}}+f_{1}e^{i\left( \varphi _{3}-\varphi _{1}\right) }\right) \right] \left| 10\right\rangle \left\langle 00\right| \nonumber \\&+\,\zeta _{1}\zeta _{2}e^{i\left( \varphi _{2}-\varphi _{1}\right) }e^{-8\gamma t}\left| 10\right\rangle \left\langle 01\right| \nonumber \\&+\,16e^{-16\gamma t}\left[ \zeta _{2}^{2}\left( f_{0}^{4}+2f_{1}f_{0}^{3}+f_{1}^{2}f_{0}^{2}\right) +\left( \zeta _{0}^{2}+\zeta _{3}^{2}\right) \left( f_{0}f_{1}^{3}+f_{1}f_{0}^{3}+2f_{1}^{2}f_{0}^{2}\right) \right. \nonumber \\&\left. +\,\zeta _{1}^{2}\left( f_{1}^{4}+2f_{0}f_{1}^{3}+f_{1}^{2}f_{0}^{2}\right) \right] \left| 10\right\rangle \left\langle 10\right| \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,\left[ 4e^{-12\gamma t}\left( f_{1}\zeta _{0}\zeta _{1}+f_{0}\zeta _{2}\zeta _{3}\right) \left( f_{0}e^{-i\varphi _{1}}+f_{1}e^{i\left( \varphi _{2}-\varphi _{3}\right) }\right) \right] \left| 10\right\rangle \left\langle 11\right| \nonumber \\&+\,\zeta _{0}\zeta _{3}e^{i\varphi _{3}}e^{-8\gamma t}\left| 11\right\rangle \left\langle 00\right| \nonumber \\&+\,\left[ 4e^{-12\gamma t}\left( f_{1}\zeta _{0}\zeta _{2}+f_{0}\zeta _{1}\zeta _{3}\right) \left( f_{1}e^{i\varphi _{2}}+f_{0}e^{i\left( \varphi _{3}-\varphi _{1}\right) }\right) \right] \left| 11\right\rangle \left\langle 01\right| \nonumber \\&+\,\left[ 4e^{-12\gamma t}\left( f_{1}\zeta _{0}\zeta _{1}+f_{0}\zeta _{2}\zeta _{3}\right) \left( f_{0}e^{i\varphi _{1}}+f_{1}e^{i\left( \varphi _{3}-\varphi _{2}\right) }\right) \right] \left| 11\right\rangle \left\langle 10\right| \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,16e^{-16\gamma t}\left[ \zeta _{3}^{2}\left( f_{0}^{4}+2f_{1}f_{0}^{3}+f_{1}^{2}f_{0}^{2}\right) \nonumber \right. \\&\left. +\,\left( \zeta _{1}^{2}+\zeta _{2}^{2}\right) \left( f_{0}f_{1}^{3}+f_{1}f_{0}^{3}+2f_{1}^{2}f_{0}^{2}\right) +\zeta _{0}^{2}\left( f_{1}^{4}+2f_{0}f_{1}^{3}+f_{1}^{2}f_{0}^{2}\right) \right] \left| 11\right\rangle \left\langle 11\right| ,\nonumber \\ \end{aligned}$$
(25)

where \(f_{0}=\frac{1}{4}e^{4\gamma t}+\frac{1}{4}\) and \(f_{1}=\frac{1}{4} e^{4\gamma t}-\frac{1}{4}\).

e) When the four EPR states are subject to zero-temperature environment, the analytical form of \(\rho _{78}^{zero}\) is given by

$$\begin{aligned} \rho _{78}^{zero}= & {} e^{-8\gamma t}[\zeta _{0}^{2}\epsilon +\left( \zeta _{1}^{2}+\zeta _{2}^{2}\right) \tau +\zeta _{3}^{2}\omega ]\left| 00\right\rangle \left\langle 00\right| +\zeta _{0}\zeta _{3}e^{-4\gamma t}e^{-i\varphi _{3}}\left| 00\right\rangle \left\langle 11\right| \nonumber \\&+\,e^{-6\gamma t}\left\{ e^{-i\varphi _{1}}\left[ \zeta _{0}\zeta _{1}\left( 1/4+s_{0}+s_{0}^{2}\right) +\zeta _{2}\zeta _{3}\left( s_{1}+2s_{0}s_{1}\right) \right] \right. \nonumber \\&\left. +\,e^{i\left( \varphi _{2}-\varphi _{3}\right) }\left[ \zeta _{0}\zeta _{1}\left( s_{1}+2s_{0}s_{1}\right) +4\zeta _{2}\zeta _{3}s_{1}^{2}\right] \right\} \left| 00\right\rangle \left\langle 01\right| \nonumber \\&+\,e^{-6\gamma t}\left. \{e^{-i\varphi _{2}}\left[ \zeta _{0}\zeta _{2}\left( 1/4+s_{0}+s_{0}^{2}\right) +\zeta _{1}\zeta _{3}\left( s_{1}+2s_{0}s_{1}\right) \right] \right. \nonumber \\&\left. +\,e^{i\left( \varphi _{1}-\varphi _{3}\right) }\left[ \zeta _{0}\zeta _{2}\left( s_{1}+2s_{0}s_{1}\right) +4\zeta _{1}\zeta _{3}s_{1}^{2}\right] \right\} \left| 00\right\rangle \left\langle 10\right| \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,e^{-6\gamma t}\left\{ e^{i\varphi _{1}}\left[ \zeta _{0}\zeta _{1}\left( 1/4+s_{0}+s_{0}^{2}\right) +\zeta _{2}\zeta _{3}\left( s_{1}+2s_{0}s_{1}\right) \right] \right. \nonumber \\&\left. +\,e^{i\left( \varphi _{3}-\varphi _{2}\right) }\left[ \zeta _{0}\zeta _{1}\left( s_{1}+2s_{0}s_{1}\right) +4\zeta _{2}\zeta _{3}s_{1}^{2}\right] \right\} \left| 01\right\rangle \left\langle 00\right| \nonumber \\&+e^{-8\gamma t}\left[ \zeta _{1}^{2}\epsilon +\left( \zeta _{0}^{2}+\zeta _{3}^{2}\right) \tau +\zeta _{2}^{2}\omega \right] \left| 01\right\rangle \left\langle 01\right| +\zeta _{1}\zeta _{2}e^{-4\gamma t}e^{i\left( \varphi _{1}-\varphi _{2}\right) }\left| 01\right\rangle \left\langle 10\right| \nonumber \\&+\,e^{-6\gamma t}\left\{ e^{i\left( \varphi _{1}-\varphi _{3}\right) }\left[ \zeta _{1}\zeta _{3}\left( 1/4+s_{0}+s_{0}^{2}\right) +\zeta _{0}\zeta _{2}\left( s_{1}+2s_{0}s_{1}\right) \right] \right. \nonumber \\&\left. +\,e^{-i\varphi _{2}}\left[ \zeta _{1}\zeta _{3}\left( s_{1}+2s_{0}s_{1}\right) +4\zeta _{0}\zeta _{2}s_{1}^{2}\right] \right\} \left| 01\right\rangle \left\langle 11\right| \nonumber \\&+\,e^{-6\gamma t}\left\{ e^{i\varphi _{2}}\left[ \zeta _{0}\zeta _{2}\left( 1/4+s_{0}+s_{0}^{2}\right) +\zeta _{1}\zeta _{3}\left( s_{1}+2s_{0}s_{1}\right) \right] \right. \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\left. +\,e^{i\left( \varphi _{3}-\varphi _{1}\right) }\left[ \zeta _{0}\zeta _{2}\left( s_{1}+2s_{0}s_{1}\right) +4\zeta _{1}\zeta _{3}s_{1}^{2}\right] \right\} \left| 10\right\rangle \left\langle 00\right| \nonumber \\&+\,\zeta _{1}\zeta _{2}e^{-4\gamma t}e^{i\left( \varphi _{2}-\varphi _{1}\right) }\left| 10\right\rangle \left\langle 01\right| +e^{-8\gamma t}\left[ \zeta _{2}^{2}\varepsilon +\left( \zeta _{0}^{2}+\zeta _{3}^{2}\right) \tau +\zeta _{2}^{2}\omega \right] \left| 10\right\rangle \left\langle 10\right| \nonumber \\&+\,e^{-6\gamma t}\left\{ e^{i\left( \varphi _{2}-\varphi _{3}\right) }\left[ \zeta _{2}\zeta _{3}\left( 1/4+s_{0}+s_{0}^{2}\right) +\zeta _{0}\zeta _{1}\left( s_{1}+2s_{0}s_{1}\right) \right] \right. \nonumber \\&\left. +\,e^{-i\varphi _{1}}\left[ \zeta _{2}\zeta _{3}\left( s_{1}+2s_{0}s_{1}\right) +4\zeta _{0}\zeta _{1}s_{1}^{2}\right] \right\} \left| 10\right\rangle \left\langle 11\right| \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,e^{-6\gamma t}\left\{ e^{i\left( \varphi _{3}-\varphi _{1}\right) }\left[ \zeta _{1}\zeta _{3}\left( 1/4+s_{0}+s_{0}^{2}\right) +\zeta _{0}\zeta _{2}\left( s_{1}+2s_{0}s_{1}\right) \right] \right. \nonumber \\&\left. +\,e^{i\varphi _{2}}\left[ \zeta _{1}\zeta _{3}\left( s_{1}+2s_{0}s_{1}\right) +4\zeta _{0}\zeta _{2}s_{1}^{2}\right] \right\} \left| 11\right\rangle \left\langle 01\right| \nonumber \\&+\,e^{-6\gamma t}\left\{ e^{i\left( \varphi _{3}-\varphi _{2}\right) }\left[ \zeta _{2}\zeta _{3}\left( 1/4+s_{0}+s_{0}^{2}\right) +\zeta _{0}\zeta _{1}\left( s_{1}+2s_{0}s_{1}\right) \right] \right. \nonumber \\&\left. +\,e^{i\varphi _{1}}\left[ \zeta _{2}\zeta _{3}\left( s_{1}+2s_{0}s_{1}\right) +4\zeta _{0}\zeta _{1}s_{1}^{2}\right] \right\} \left| 11\right\rangle \left\langle 10\right| \nonumber \\&+\,\zeta _{0}\zeta _{3}e^{-4\gamma t}e^{i\varphi _{3}}\left| 11\right\rangle \left\langle 00\right| +e^{-8\gamma t}\left[ \zeta _{3}^{2}\epsilon +\left( \zeta _{1}^{2}+\zeta _{2}^{2}\right) \tau +\zeta _{0}^{2}\omega \right] \left| 11\right\rangle \left\langle 11\right| ,\nonumber \\ \end{aligned}$$
(26)

where \(s_{0}=e^{2\gamma t}-e^{\gamma t}+\frac{1}{2}\), \(s_{1}=\frac{1}{2} e^{\gamma t}-\frac{1}{2}\), \(\epsilon =\frac{1}{16}+\frac{1}{2} s_{1}+s_{1}^{2}+\frac{1}{2}s_{0}+\frac{3}{2} s_{0}^{2}+2s_{0}^{3}+s_{0}^{4}+3s_{0}s_{1}+4s_{0}s_{1}^{2}+6s_{0}^{2}s_{1}+4s_{0}^{2}s_{1}^{2}+4s_{0}^{3}s_{1} \), \(\tau =\frac{1}{4} s_{1}+2s_{1}^{2}+4s_{1}^{3}+3s_{0}s_{1}+8s_{0}s_{1}^{2}+8s_{0}s_{1}^{3}+3s_{0}^{2}s_{1}+8s_{0}^{2}s_{1}^{2}+2s_{0}^{3}s_{1} \), and \(\omega =s_{1}^{2}+8s_{1}^{3}+16s_{1}^{4}+4s_{0}s_{1}^{2}+16s_{0}s_{1}^{3}+4s_{0}^{2} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JF., Liu, JM. & Xu, XY. Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments. Quantum Inf Process 14, 3465–3481 (2015). https://doi.org/10.1007/s11128-015-1049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1049-2

Keywords

Navigation