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Abstract The relationship between the foundations of mathematics and physics is
a topic of of much interest. This paper continues this exploration by examination of
the effect of space and time dependent number scaling on theoretical descriptions
of some physical and geometric quantities. Fiber bundles provide a good framework
to introduce a space and time or space time dependent number scaling field. The
effect of the scaling field on a few nonlocal physical and geometric quantities is
described. The effect on gauge theories is to introduce a newcomplex scalar field
into the derivatives appearing in Lagrangians. U(1) invariance of Lagrangian terms
does not affect the real part of the scaling field. For this field, any mass is possible.
The scaling field is also shown to affect quantum wave packetsand path lengths, and
geodesic equations even on flat space. Scalar fields described so far in physics, are
possible candidates for the scaling field. The lack of directevidence for the field in
physics restricts the scaling field in that the gradient of the field must be close to zero
in a local region of cosmological space and time. There are norestrictions outside the
region. It is also seen that the scaling field does not affect comparisons of computation
or measurements outputs with one another. However it does affect the assignment of
numerical values to the outputs of computations or measurements. These are needed
because theory predictions are in terms of numerical values.

Keywords number structure scaling, fiber bundles, gauge theory, theory and
experiment

1 Introduction

The relation between mathematics and physics at a foundational level is a topic of
much interest. The need for deeper understanding of the relation is emphasized by
Wigner’s paper ”On the unreasonable effectiveness of mathematics in the physical
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sciences” [1] This paper and others [2,3] on this and similartopics [4] suggest that
this is a worthwhile area in which to work. Wigner’s paper wasalso part of the im-
petus for earlier work towards a coherent theory of mathematics and physics together
[5,6].

It is clear that numbers play an essential role in this relation between physics
and mathematics. Numbers provide the connection between theory and experiment.
Theoretical predictions of physical quantities as numbersthat are outcomes of com-
putations, are to be compared with numerical outcomes of experiments.

This paper is based on the observation that numbers of different types, (natural
numbers, integers, rationals, reals, and complex numbers), as mathematical structures
satisfying relevant axioms, have a flexibility that affectsboth theory descriptions of
physical quantities and the comparison of theory to experiment. This flexibility is
based on the separation of two concepts, that of numbers as elements of a base set of
a structure, and the values the numbers have in the structure.

A consequence of this concept separation is the possibilityto assign different
number values to each of the base set elements. This is the basis of number scal-
ing described here and in earlier work. This distinction between number and number
value is exploited here by first associating separate numberstructures with each lo-
cation in a space or space time manifold,M. This association allows the introduction
of a space and time dependence of the number values associated with the elements of
the base sets in the structures.

The separation of of number from number value is based on the description of
mathematical systems of a given type as structures or models. Structures for each
system type are required to satisfy a set of axioms relevant to the type of system [7,
8]. Number structures with different number values for the same base set are referred
to as scaled number structures or just scaled numbers.

Another impetus for this work comes from gauge theories. These are based on
the association of separate finite dimensional vector spaces with each point of a
space time manifold [9]. Gauge transformations between vector spaces at neighbor-
ing points ofM account for the freedom to choose basis sets for the spaces atdifferent
locations [10]. Just one scalar field is assumed to be the common field for all the vec-
tor spaces.

In this paper and in earlier work, this assumption is droppedin that a separate
scalar field is associated with each point ofM. The scalar fields are real for tangent
vector spaces onM and complex for vector spaces used in gauge theories. The scalar
field correspondent to the basis choice freedom for vector spaces in gauge theories is
based on the distinction between the concepts of number and number value, and the
choice freedom for values of numbers in structures at different locations ofM.

The separation of the concepts of number from number value and the resulting
number scaling are described in the next section. This is followed in Section 3 by
a description of fiber bundles [11] on a base manifold,M. Fiber bundles provide a
very useful setup as a description of gauge theories [12,13]and as a distinction be-
tween local mathematical structures as fiber elements and global elements as fields or
sections and connections on the bundle. The effects of number scaling are accounted
for by use of a space and time dependent scaling field,f . The effects of this field on
gauge theories are described in Sections 4 and 5.
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Number scaling as defined here and in previous work [14,15,16], is different
from other types of scaling described in the literature. It is different from conformal
scaling [17,18] in that all quantities, angles, as well as lengths, and other quantities
are scaled. It is different from the geometric scaling introduced by Weyl [19] in that
the scaling field introduced here is scalar and thus integrable. A recent paper [20]
describing the relativization of arithmetic is similar to the description given here of
number scaling for the natural numbers.

The effects of number scaling with fiber bundles are extendedto other areas of
physical theory in Section 6 on local and nonlocal representations of nonlocal physi-
cal quantities. Nonlocal physical quantities are those expressed as integrals or deriva-
tives over space and/or time. Local representations of these quantities are contained
within a fiber as they are based on the structures in a fiber. Nonlocal representations
begin as integrals or derivatives over quantities in different fibers. Since the integrands
or derivative components belong to different fibers, connections are used to move the
components to a common location. The expansion of a quantum wave packet as an
integral of space components and lengths of paths onM are used as examples.

The space and time dependence of the scaling field might be expected to affect
the comparison of computation and measurement results. This is not the case. This is
shown in section 7.1 where it is noted that comparison of results requires physical
transmissions of the information in the outcome states to a common location for
local comparison. It is also emphasized that the scaling field interpolates or connects
experiment and computation outcomes as numbers in a base setwith the theoretical
values as number values in a scaled number structure.

The next section discusses restrictions imposed on the scaling field, f by the fact
that experiments done to date do not seem to show the presenceof f . It is noted that
f should be roughly constant over a region of cosmological space and time in which
sentient beings or observers can communicate. Outside thisregion, which is small
compared to the size of the universe, there are no restrictions on f .

Finally, last but by no means least, this paper is dedicated to Howard Brandt. He
encouraged this sort of work even though it did not seem to be relevant to other areas
in physics or mathematics. His kind words will be missed.

2 Number scaling

As noted in the introduction, mathematics is based on a collection of structures of dif-
ferent types. Many of the structures are interconnected by maps between structures.
A structure consists of a base set, a few basic operations, none, or a few basic rela-
tions and a few constants. The structure is required to satisfy a relevant set of axioms.
The different structure types are connected by different maps between the structures.
Maps such as scalar vector multiplication and vector norms,are examples of these
maps between a vector space and the underlying scalar field structure.

A good way to approach number scaling is to note that structures for the different
types of numbers, as usually used, conflate two different concepts: numbers as ele-
ments of the base sets, and the values that the numbers have inthe structures. As will
be seen, one can define many different structures for the sametype of number. The
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structures all have the same base set, but the elements of thebase set have different
values that depend on the structure containing them.

Natural numbers, or nonnegative integers, provide the clearest example for the
distinction between number and number value. The usual structure,N̄ is represented
by

N̄ = {N,+,×,<,0,1}. (1)

Here+,× are basic operations,< is a basic relation, and 0,1 are constants. This
structure satisfies the axioms for a commutative semiring with identity [21]. In this
structure, the element, ”n” , in the base set has value,n. In particular the base set
element, ”1”, has value 1 because it satisfies the multiplicative identity axiom. Quotes
are used to emphasize the fact that the base set elements, as represented here, are
numbers and not number values.

Here and from now on, number structures that satisfy relevant axioms are denoted
by an overline, as in̄N. Elements, such asN without an overline, denote base sets.

The even numbers also give a valid structure for the natural numbers. The corre-
sponding structure is defined as

N̄2 = {N2,+2,×2,<2,02,12}. (2)

HereN2 is the subset ofN consisting of the elements ”0”, ”2” , ”4” , · · · . The value
of the number, ”2”, satisfies the multiplicative identity axiom in this structure. As a
result it has value 1. The subscript 2 on 1 and on other structure components identifies
the structures containing the components.

This is a simple example of the separation of the concept of number, as a base set
element, from the value it has in a structure. It shows that the element, ”2” in the base
set has value, 12 in N̄2, and value 2= 21 in N̄. In general the base set element, ”2n” ,
has valuen in N̄2. The only element whose value is unchanged is ”0”.

A useful way to represent this is by means of value maps, For exampleval(”n”) =
val1(”n”)= n denotes the value of ”n” in N̄.Note thatN̄= N̄1.Howeverval2(”2n”)=
n2 is the value of ”2n” in N̄2. Heren2 is the same value in̄N2 asn is in N̄.

Another example of natural numbers is provided by Von Neumann’s description
of the natural numbers as the finite ordinals in set theory. Inthis representation, the
base setN consists of the elements,φ ,{φ},{φ ,{φ}}, · · · . Hereφ denotes the empty
set. The base setN2 is a subset ofN consisting of the sets,φ ,{φ ,{φ}}, · · · . The set
{φ ,{φ}} has value 2 in̄N and value 12 in N̄2.

These arguments can be extended to natural number structures whose base set
consists of multiples ofn. This structure is represented by

N̄n = {Nn,+n,×n,<n,0n,1n}, (3)

The base set,Nn, consists of the elements, ”0”, ”n” , ”2n” , · · · . The element ”n” in Nn

has value, 1n in N̄n. If n is even, ”n” has value(n/2)12 = (n/2)2 in N̄2 and value
n= n1 in N̄.

This can all be expressed using value maps. One hasvaln(”mn”) = mn. Also

val2(”mn”) = val2,n(valn(”mn”)) =
n
2
×2 m2. (4)
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Heremn is the same number value in̄Nn asm2 is in N̄2. If a is a number inNn then

valn(a) =
1
n

an

wherean = valn(na) is the value of ”na” in N̄n.
This shows that, by themselves, the natural numbers in the base set have no in-

trinsic values (”0” excepted). Numbers acquire values onlyas base set elements in a
valid structure.

These relations between̄N2 andN̄n show that the components of the structure,N̄n,
can be mapped onto those ofN̄2. This map is the identity map on the base set elements
in that they are unchanged. In essence this map represents the element values and
components in one structure in terms of those in another structure.

The action of this map converts̄Nn to a new structure,̄Nn
2 in which the number

values of the numbers inNn are those of̄N2 and the basic operations and relation of
N̄n are expressed in terms of those ofN̄2. The resultant structure is given by

N̄n
2 = {Nn,+2,

2
n
×2,<2,02,

n
2

12}. (5)

The scaling of the multiplication operation shown here is not arbitrary. it is a
consequence of the requirement that the map preserves the truth of the arithmetic
axioms. It is a straightforward exercise to show thatN̄n satisfies the axioms if and
only if N̄2 does if and only ifN̄n

2 does. In particular, note that the value(n/2)2×2 12

satisfies the multiplicative identity axiom in̄Nn
2 if and only if (2/2)2 = 12 satisfies

the axiom inN̄2 :

(
n
2
)a2(

2
n
×2)(

n
2
)12 = (

n
2
)a2 ↔ a2×2 12 = a2.

This is the essence of the basic ideas behind number scaling applied to the natural
numbers. It shows that for any element,l in Nn, the value assigned tol in N̄n is 1/n
times the value assigned tol in N̄1 = N̄. If a is a factor ofn, then the value ofl in N̄n

is a/n times the value ofl in N̄a.
This description of number scaling can be easily extended toother types of num-

bers such as the integers, and the rational, real, and complex numbers. For any ra-
tional, real, or complex scaling factor,s the corresponding scaled structures for the
rational, real and complex numbers are given respectively by

Ra
s
= {Ra,±s,×s,(−)−1s

s ,<s,0s,1s} (6)

that satisfy the axioms for the smallest ordered field [22],

R̄s = {R,±s,×s,(−)−1s
s ,<s,0s,1s} (7)

that satisfy the axioms for a complete ordered field [23], and

C̄s = {C,±s,×s,(−)−1s
s ,(−)∗s

s ,0s,1s} (8)

that satisfy axioms for an algebraically closed field of characteristic 0 [24]. Recall
that overlined symbols, as in̄Rs, denote structures, symbols without overline, such as
R, denote a base set.
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Note that, unlike the case for the natural numbers (and integers), the base sets are
the same for all values ofs. This is a consequence of the fact that rational, real, and
complex numbers are closed under the inverse operation.

The standard or usual representation of these number types is for the scaling factor
s= 1. However, as with the natural numbers, the emphasis here is onthe relations
between number structures with different scaling factors,not on the absolute values
of the scaling factors.

To see this, lett ands be pairs of rational, real, and complex scaling factors. For
rational, real, and complex numbers, the structures corresponding toN̄n

2 are

Ra
t
s = {Ra,±s,

s
t ×s,

t
s(−)−1s,<s,0s,

t
s1s}

R̄t
s = {R,±s,

s
t ×s,

t
s(−)−1s,<s,0s,

t
s1s}

C̄t
s = {C,±s,

s
t ×s,

t
s(−)−1s, t

s(−)∗s,0s,
t
s1s}

(9)

These structure representations hold only ift andsare both positive or both negative.
If not, then<s is replaced by>s in the structures forRa

t
s andR̄t

s.
To help in understanding the structures for complex numbers, complex conjuga-

tion is added as a basic operation even though it is not necessary. AlsoC̄t satisfies the
complex number axioms if and only if̄Ct

s does.
The complex number structure,̄Ct

s may seem strange because,t/scan be complex
when viewed from outside the structure. The value maps are quite useful here to
understand the relations among the structure elements. Forexample one has

vals,t((valt(ta))
∗t ) =

t
s
(a∗t

t )s =
t
s
a∗s

s . (10)

Herea∗s
s is the same number value in̄Cs asa∗t

t is in C̄t .
It will be quite useful to give generic representations of the structure for rational,

real, and complex numbers. Let the structures,S̄t andS̄t
s where

S̄t = {S,Opt ,Relt ,Kt}
S̄t

s = {S,Opt
s,Relts,K

t
s}

(11)

be generic structures for the different types of numbers: rational, real and complex
that are shown in Eqs. 6 -8 and 9.Op denotes the set of basic operations,Rel the
set of basic relations, if any, andK the set of constants.̄St

s gives the components of
S̄t in terms of those of̄Ss. This is shown byOpt

s,Relts,K
t
s. These components include

scaling factors where appropriate. For vector spaces basedon complex scalars,S=C,
for spaces based on real scalars,S= R.

These generic structures can be used to define value maps for the number struc-
tures in Eq. 9. Letvalt(a) be the number value associated with an arbitrary numbera
in S in the structurēSt . Then the definitions of Eq. 9 show that

vals(a) = vals,t(valt(a)) =
t
s
valt(a)s. (12)

Herevalt(a)s is the same number value in̄Ss asvalt(a) is in S̄t .
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It is important to note that, the observation that the numbers of the base sets do
not have intrinsic values, does not mean that one can arbitrarily assign values to the
numbers. The requirement of preservation of axiom truths means that the freedom of
value assignment is restricted to an arbitrary scaling of the values assigned to the base
set elements and basic operations, where needed. This is shown by Eq. 12 in that the
map,vals,t depends only onsandt and is independent ofa.

The effects of number scaling extend to vector spaces. Let

V̄ = {V,±, ·, |− |,v} (13)

denote the usual structure for a normed vector space. Herev denotes an arbitrary
vector value and|v| denotes the real valued norm ofv in S̄. The associated scalar
structure isS̄. Also · denotes scalar vector value multiplication.

For each scaling factor,t, defineV̄t by

Vt = {V,±t , ·t , |− |t ,vt}. (14)

Herev= v1 is the same vector value in̄V asvt is in V̄t . However ifv is the vector in
V whose value isv1 in V̄, thentv is the vector inV whose value isvt in V̄t . As was the
case for scalars, the components of the vector space,V̄t , expressed in terms of those
of V̄s, are given by

V̄t
s = {V,±s,

t
s
·s,

s
t
|− |s,

s
t
vs}. (15)

3 Fiber bundles

The fact that values of the numbers in the base setS can be scaled by any number
value,s, suggests that the freedom of basis choice in gauge theories can be extended
to include freedom of choice of scaling factors for number values. A very useful
framework for describing this and for extension of number scaling freedom to other
areas of physics is provided by fiber bundles.

A fiber bundle [11] consists of a triple,E, p,M whereE is a total space,p is a
projection ofE onto M, andM is a manifold. For eachx in M, p−1(x) is the fiber
at x. For the purposes of this workM is taken to be either a Euclidean space with or
without time, or space time of special relativity. In this case a fiber bundle becomes a
product bundle of the form{M×F, p,M}. HereF is the fiber andp−1(x) = Fx is the
fiber atx.

Many choices for the contents ofF are possible. For gauge theories [13,12]F =
V̄ a vector space. The close association of scalars with vectorspaces suggests the
inclusion of scalars with the vector space or spaces. The resulting fiber bundle is

S V = {M,(S̄× V̄), p,M} (16)

The fiber atx is given by

p−1(x) = Fx = x× S̄× V̄ = S̄x× V̄x. (17)

.
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Fibers can be expanded to include representations ofM. This can be done by use
of charts,φ , that are open set preserving maps ofM onto Rn. Here Rn is a chart
representation ofM wheren is the dimension ofM with coordinate values labelled
with real numbers [4]. Also, here,n= 3 or 4. SinceM is flat, an atlas of charts is not
needed, one chart over all ofM is valid in thatφ(M) = Rn.

The resulting fiber bundle is

S V R = {M× (S̄× V̄×Rn), p,M} (18)

with fiber atx given by
Fx = S̄x× V̄x×Rn

x. (19)

Fibers can be extended to include number scaling. Letsbe a scaling factor. Define
the bundle,

S V R
s = {M× S̄s× V̄s×Rn, p,M}. (20)

Collect the fibers of these bundles for alls into one fiber. The resulting bundle is given
by

S V R
∪ = {M×

⋃
s

(S̄s× V̄s)×Rn, p,M}. (21)

The fiber atx is given by
Fx =

⋃
s

(S̄s
x× V̄s

x )×Rn
x. (22)

One can define a structure group,WS,V on S V R
∪. For eacht in GL(1,S) the

structure group element,WS,V(t), acts freely and transitively on
⋃

s(S̄
s× V̄s) accord-

ing to
WS,V(t)(S̄

s× V̄s) = S̄ts× V̄ts. (23)

This shows that [13]S V R
∪ is a principal fiber bundle. All scaling factors are

equally likely. There is no preference of one over another. Also

WS,V(s)◦WS,V(u) =WS,V(su) =WS,V(us) =WS,V(u)◦WS,V(s). (24)

4 Connections

Fiber bundles of the form ofS V R
∪ and further expansions of the fibers provide

a suitable framework for the inclusion of the effects of space and/or time dependent
number scaling into theoretical predictions of physical quantities. One way to include
these effects is by use of a number scaling or guide fieldf with domainM that takes
values inGL(1,S). This field can be represented by a pair of real scalar fields as in

f (x) = eθ(x)+iφ(x). (25)

The effect of number scaling shows up in any physical quantity whose theoret-
ical description is nonlocal. These descriptions use spaceand/or time integrals or
derivatives. These quantities require mathematical combinations, such as addition or
subtraction, of values in different fibers of a fiber bundle. Such combinations are not
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defined because mathematical operations on fiber elements are defined only within
fibers. They are not defined for elements in different fibers.

This problem is remedied by the use of connections that connect elements in a
fiber at one location to those at another location. Connections are much used in gauge
theories as elements of gauge groups that relate field valuesat neighboring points [9,
26]. Here number scaling connections are based on variations in f .

An f based connection affects both scalar and vector structure valued fields as
well as scalar and vector valued fields. A schematic representation of the f depen-
dence for scalar structure and scalar valued fields is shown in Figure 1.

Fig. 1 Representation of the scaling field,f , and values of the scalar structure valued field,Ψf and the
scalar field,ψ , at two points,x andy of M.

Vector structure valued and vector valued fields are used to show the effect off
on derivatives of these fields. LetΨ be a vector structure valued field overM. In the
presence off ,

Ψ(x) = V̄ f (x)
x . (26)

The differentialdΨ is represented by

dΨ = ∂µ,xΨdµx+ ∂µ, f ,xΨdµx. (27)

Here

∂µ,xΨ =
V̄ f (x+dµ x)

x+dµ x − V̄ f (x+dµ x)
x

dµx
(28)
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and

∂µ, f ,xΨ =
V̄ f (x)+δ f µ (x)

x − V̄ f (x)
x

dµx
. (29)

The derivative,∂µ,xΨ is not defined because the terms in the numerator are in
different fibers. The indicated subtraction for structuresis not defined between fibers
at different locations. It is defined between structures at the same location.

This is remedied by the identity connection that mapsV̄ f (x+dµ x)
x+dµ x into the same

structure in the fiber atx. Since this is the same structure as isV̄ f (x+dµ x)
x , the indicated

numerator subtraction gives 0. As a result,∂µ,xΨ = 0.
The term,∂µ, f ,xΨ , is not 0 (unless∂µ,x f = 0) because the terms in the numerator

of Eq. 29 are in different levels of the fiber atx. This can be seen by parallel trans-
porting f (x+dµx) to the same level value in the fiber atx and defining the indicated
level change,δ f µ (x) by

f (x)+ δ f µ(x) = f (x+dµx). (30)

Taylor expansion of the right hand term to first order in smallquantities gives

δ f µ(x) = ∂µ,x f dµ x. (31)

The derivative in Eq. 29 is evaluated by use of Eqs. 30 and 31 toexpress the

components of̄V f (x)+δ f µ (x)
x in terms of those in̄V f (x)

x . The result is

∂µ, f ,xΨ =
V̄

f (x)+∂µ ,x f dµ x
f (x),x − V̄ f (x)

x

dµx
=

V̄
f (x)+∂µ ,x f dµ x− f (x)
f (x),x

dµx
=

V̄
∂µ ,x f dµ x
f (x),x

dµx
. (32)

Here the equivalencēV f (x)
x = V̄ f (x)

f (x),x has been used.

The resulting scaling coefficient for̄V f (x)
x is ∂µ,x f dµx/ f (x). This is used to give

the final result as

∂µ, f ,xΨ =
∂u,x f
f (x)

Ψ = (Γµ(x)+ i∆µ(x))Ψ . (33)

HereΓ and∆ are the gradients of the scalar fields,θ andφ . The same result holds if

Ψ is a scalar structure valued field whereΨ (x) = S̄f (x)
x .

Scalar or vector valued fields,ψ take values in scalar or vector structures at differ-

ent points ofM. At point x of M, ψ(x) is either a vector or scalar in̄V f (x)
x or in S̄f (x)

x .
Eq. 27 also holds forψ , in this case∂µ,xψ is not 0. The other derivative remains the
same. The final result is that, in the presence of scaling,

Dµ,xψ = (∂µ,x+Γµ(x)+ i∆µ(x))ψ . (34)

This result holds for both scalar and vector fields.
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5 Gauge theories

Number scaling also has an effect on gauge theories. The freedom of basis choice at
different points initiated by Yang Mills [10] adds other factors to the connection used
in the covariant derivative.

For Abelian theories the covariant derivative of vector fields is given by Eq. 34
with another term added. The result is

Dµ,xψ = (∂µ,x+grΓµ(x)+ igi∆µ(x)+ ihiBµ(x))ψ . (35)

HereB denotes the photon field. Coupling constants have been addedto each of the
component fields.

The requirement that all terms appearing in Lagrangians be invariant under local
U(1) = eiβ (x) gauge transformations gives restrictions on the fields. These are given
by

grΓ ′
µ(x)+ igi∆ ′

µ(x)+ ihiB′
µ(x)+ i∂µ,xβ (x)

= grΓµ(x)+ igi∆µ(x)+ ihiBµ(x).
(36)

The fact that the Aharonov Bohm effect [27] requires that thephoton field must be
nonintegrable means that∆µ(x) cannot be the photon field. The reason is that it is
integrable.

Eq. 36 is satisfied by the conditions,

Γ ′
µ(x) = Γµ(x)

gi∆ ′
µ(x)+hiB′

µ(x) = gi∆µ(x)+hiBµ(x)− ∂µ,xβ (x) (37)

This equation can be satisfied in many ways. The most general is to expressβ (x) as
the sum of two scalar functions as inβ (x) =α(x)+γ(x) and split the second equation
into two equations as in

B′
µ(x) = Bµ(x)− 1

hi
∂µ,xα(x)

∆ ′
µ(x) = ∆µ(x)− 1

gi
∂µ,xγ(x).

(38)

The requirement that the photon field be massless is taken care of here by setting
γ(x) to be nonzero andx dependent. There are no such restrictions on the∆ field.
If α(x) is x dependent and nonzero, then∆ must be massless. Otherwise any mass,
including 0, is possible for∆ . There are no mass restrictions on theΓ field.

The great accuracy of QED with no scaling fields present showsthat the ratios
of gr andgi to the fine structure constant must be very small. Alternatively, Γ and
∆ must be very small over regions of space and time in which QED is verified to be
valid.

It is of interest to speculate on the physical nature, if any,of the scalar fields,θ and
φ . Could either or both be the Higgs field? [28], the inflaton field? [29], dark matter?
[30], dark energy? [31], some combination of these? [32,33], or none of these? These
are questions for the future.

The appearance and effect of theΓ and∆ fields in nonabelian theories is the same
as that in Abelian theories. Eq. 36 remains valid with additional requirements on the
fields corresponding to the generators of thesu(n) Lie algebra.
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6 Local and nonlocal expressions of physical quantities

Fiber bundles offer an interesting way to distinguish between local and nonlocal the-
oretical descriptions of nonlocal physical quantities. This is a consequence of the
observation that fibers of a bundle can be extended to includestructures for many
different mathematical systems. The setup with no scaling present is presented first
to illustrate may of the properties of global and local representation. This is followed
by a discussion with scaling present.

6.1 No scaling present

Let the fiber of a bundle contain̄C× H̄×φ(M). Hereφ(M) = Rn is a chart represen-
tation ofM in the fiber,C̄ is a complex number structure, and̄H is a Hilbert space of
vectors. The fiber bundleCH M is

CH M = M× (C̄× H̄ ×φ(M)), p,M. (39)

The bundle is a product bundle becauseM is assumed to be flat as in Euclidean space
(n=3) or in space time (n=4). A fiber at pointx of M is given by

p−1(x) = C̄x× H̄x×φx(M). (40)

Here the coordinate chart ,φ(M)x in the fiber atx is taken to be the same as a direct
chart map,φx of M into the fiber atx. That is,φ(M)x = φx(M) = Rn

x.
The fiber of the bundle contains sufficient mathematical systems to represent a

wave packet of a quantum system as a vector,ψ =
∫

ψ(y)|y〉dy in H̄. Hereψ(y) is a
complex amplitude or number value in̄C and the integral is overR3.

It follows from the bundle structure that fiber at each pointx of M contains a
representation of the wave packet as

ψx =

∫
x
ψx(y)|y〉xdy. (41)

The subscriptx indicates that the integral is overR3
x and that the state is a state vector

in H̄x.
This is defined to be a local representation of a nonlocal physical quantity. A wave

packet is a nonlocal quantity as it is a space integral of amplitudes and vectors. It is
local because the mathematical systems needed to describe it are in the bundle fiber.
Note that the property of locality depends on the bundle fiber. If the fiber did not
containC̄ or H̄ or φ(M) then local representations ofψ in the bundle would not be
possible. For this reason it may be better to relativize locality to a bundle by referring
to the representation as aCH M local representation.

A global representation of the wave packet, asψg, can also be given. The goal
is to lift the description ofψg, as in integral overM, up to an integral in which each
value of the integrand is in a different fiber of the bundle. Connections are used to
move the integrands to a common reference location in one fiber where the integral
can be defined.
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The representation ofψg as an integral overM is given byψg =
∫

ψg(x)|x〉dx.
Hereψg can be regarded as a vector in a global Hilbert space,H, with ψg(x) a com-
plex number value in a global scalar field,C̄.

As before, letCH M be the bundle. The vectorψg can be mapped into the bun-
dle, by first lifting each value,ψg(x)|x〉 of the integrand to a corresponding integrand,
ψg(z)x|z〉x, in H̄x in the fiber ofCH M atx. The point,z, in R3

x is related to the point,
x, in M by z= φ(x)x = φx(x). Hereψg(z)x is the same complex amplitude (number
value) inC̄x asψg(x) is in C̄.

Figure 2 shows schematically two components of the global representation ofψg

in fibers at points,y andx. Each fiber includes a chart representationM. The local
representations as integrals over the chart space are indicated byψy andψx.

Fig. 2 Representation of the global representation,ψg with components in each fiber. Two components,
one in the fiber aty and the other in the fiber atx are shown Included also are the chart representations,
φy(M), andφx(M), of M in each of the two fibers. Local representations of the wave packet, as integrals
overφx(M) andφy(M), are indicated byψy andψx.

An integral of state components in the different fibers wouldnot make sense be-
cause the indicated addition of integrands over different fibers is not defined. Addition
is defined only for components within a fiber, not between components in different
fibers. This problem is solved by the use of connections to mapthe integrands in the
different fibers to integrands in one fiber at some reference location,x0, onM.
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In the absence of scaling the connection is the identity map.The action of this map
on the component,ψg(z)|z〉 in the fiber atx wherez= φx(x), gives the component,
ψg(y)x0|y〉x0 in the fiber atx0 wherey= φx0(x).

The definition of the localized wave packet as an integral over φx0(M) requires
that the family of chartsφx for all x in M satisfy some consistency conditions. For
each pair of pointsx,y, in M one requires thatφx be the same chart atx asφy is aty.
In particular for each pointz in M, one requires thatφx(z) be the same point inR3

x as
φy(z) is in R3

y.
If these chart conditions are satisfied, one can define thex0 localized representa-

tion of ψg as

ψg =

∫
x0

ψg(w)|w〉x0dw. (42)

Comparison of this localized representation ofψg with the local one shown in Eq. 41
with x= x0 shows thatψg = ψx0. The localized representation of the global represen-
tation of the state is the same as the original local representation of the state.

This example might lead one to think that there is no difference between global
and local representations of nonlocal physical quantities. As a result it makes no
difference which representation one uses. However this is the case with no number
scaling present. If number scaling is present then the localized version of the global
representation is different from the local representation.

6.1.1 Global representations at different fiber levels

Global representations of the wave packet at different fiberlevels requires extension
of the fiber bundle to

CH M
∪ = M×

⋃
c

(C̄c× H̄c×φc(M)), p,M. (43)

Hereφc
x (M) = (R̄c

x)
3. The fiber at each point,x of M is defined by

p−1(x) =
⋃
c

(C̄c
x × H̄c

x ×φc
x(M)). (44)

There are many different equivalent local representationsof the wave packet, one
at each level,c, of the fiber. It is expressed by

ψx,c =

∫
z
ψx,c(z)dzx. (45)

The integral is over allz in φx(M) andψx,c(z) is a number value in̄Cc
x.

The wave packetsψx,c for differentc are all equivalent. To see this letWCH be the
structure group onC H M

∪. For each complex number,d, in GL(1,C) the action of
the group elementWCH,d is given by

WCH,d(C̄
c× H̄c) = C̄dc× H̄dc. (46)

It follows thatψx,dc =WCH,d(ψx,c) is the same vector in̄Hdc
x asψx,c is in H̄c

x .
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The components of the corresponding global representation, ψg,c of the wave
packet are similar to those shown in Fig. 2. The componentψg,c(φy(y))|φy(y)〉c in
the fiber aty is a vector inH̄c

y andψg,c(φy(y)) is a complex number value in̄Cc
y.

Connections are used to transform the integrands, all at level,c, to a fiber at a arbitrary
reference location,x0. This is needed so that the integral expression ofψg,c makes
sense.

6.2 Number scaling present

To account for scaling, one follows the same prescription aswas used to obtain a
representation ofψg at a reference location,x0, as in Eq. 42. The connection to trans-
form the wave function components in the fibers at each pointz of M to x0 uses the
scaling functionf shown in Fig. 1. The result of the parallel transform multiplies the
integrands by a factor(c f(z))/c f(x0). The resulting expression for the wave packet
at x0 is given by

ψc,g,x0 =

∫
x0

c f(z)
c f(x0)

ψx0,c(w)|w〉dw. (47)

The integral is over all points,w, in φc
x0
(M) = (R̄c

x0
)3. Also z= (φc

x0
)−1(w).

This result shows that the global representation of the scaled wave packet is in-
dependent of the levelc. The expression is invariant under level change. This is quite
satisfactory since physical predictions and expressions of physical quantities as num-
ber values or vector values should not depend on the fiber level chosen for expression.

An equivalent expression ofψg (c is suppressed) replacesf by its scalar field
representation as in Eq. 25. the result is

ψx0,g = e−θ(x0)−iφ(x0)
∫

x0

eθ(w)+iφ(w)ψx0,c(w)|w〉dw. (48)

Here the domain off (z) has been lifted fromM to φx0(M). Also f (x0)
−1 has been

moved outside the integral.
This expression shows that the wave packet expression is invariant under adding

a constant to the fields,θ andφ . Note that changing the reference location toy from
x0 simply replacesx0 by y in this expression.

6.2.1 Path lengths

Another example of the effect of scaling is on the lengths of paths. Letq be a path
on a space time manifold,M, whereq is parameterized by real numberss. The initial
and final points ofq areq(0) = x andq(1) = y. Let RT

∪ be the fiber bundle,

RT
∪ = M×

⋃
r

(R̄r × T̄r ×φ r(M)), p,M. (49)

The fiber atz is
p−1(z) =

⋃
r

(R̄r
z× T̄r

z ×φ r
z(M)). (50)



16 Paul Benioff

In these equations̄T r
z is the local representation atzof the tangent space at levelr on

M. SinceM is Minkowski, T̄ r
z covers all ofM. Hereφ r

z is a chart that mapsM onto a
local levelr representation ofM at z. In particular,φ r

z(M) = (Rr)4
z.

As noted before, the effects of number scaling on theoretical descriptions of quan-
tities is independent of the level at which they are described. An alternate way to say
this is that the effects of number scaling on theory descriptions are invariant under
level change. For this reason the superscriptr will be suppressed by setting its value
to ber = 1. ThusR4

z is a local representation ofM atz.
A local description in the fiber atzof the length of the path,q, is given by

L(q)z =

∫ 1

z,0
|∇sqz ·∇sqz|

1/2dsz. (51)

Hereqz is the local representation ofq as a path onφz(M) whereqz(s) = φz(q(s)).
Also ∇sqz is the gradient ofqz at sz in the fiber atz. No scaling is involved here
because the path length is defined for a localized representation of q. SinceM is
space time

∇sqz ·∇sqz = ηµ,µ ∂µ,sqz∂µ,sqz. (52)

Hereηµ,µ for µ = 0,1,2,3 are the diagonal elements of the metric tensor for special
relativity.

The situation is quite different if one describes a global version of the length of
q and then localizes the description to obtain a meaningful result. The global version
of the path length begins with the expression

L(q)g =

∫ 1

q,0
|∇sqq(s) ·∇sqq(s)|

1/2ds. (53)

In this expressionqq(s)(s) is the point inR4
q(s) defined byqq(s)(s) = φq(s)(q(s)). For

each value ofs, the integrand is in the fiber atq(s) onM.
The integral in Eq. 53 is not defined because the integrands are in different fibers.

This is remedied by parallel transforming the integrands toa common fiber location,
x, and then integrating. The result is given by

L(q)g,x =
∫ 1

x,0
e−θ(x)+θ(q(s))x|∇sqx ·∇sqx|

1/2dsx. (54)

Hereθ (q(s)x) is the same real number in̄C f (x)
x asθ (q(s)) is in C̄ f (q(s))

q(s) .

The choice of reference point is arbitrary. The equivalent expression for any other
reference point,z is obtained by multiplyingL(q)g,x bye−θ(z)+θ(x). The result is given
by Eq. 54 after replacing all occurrences ofx in the equation byz.

The global geodesic distance betweenx andy is affected by number scaling. The
resulting geodesic equation is obtained by variation of thepathq to obtain the Euler
Lagrange equations. Following the procedure in general relativity and replacing the
variablesby the proper time,τ gives the result [34,35]

[
d
dτ

+Γ ·∇τq]
dqµ

dτ
+ηµ,µΓµ(q(τ)) = 0. (55)
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Here, as before,Γ is the gradient ofθ . There are four such equations, one for each
value ofµ .

The effect of scaling is shown by the presence ofΓ . If Γ = 0, the equation reduces
to that for a straight line asd2qµ/dτ2 = 0.

These are only two of the many examples of physical quantities that are affected
by number scaling. Another effect is the replacement of the momentum operator by
the canonical momentum. This givesp → p+Γ +i∆ . Others include path integrals in
quantum mechanics and the action as a space time integral of Lagrangian densities.

These examples are sufficient to show the effect of number scaling on theory
descriptions of many physical quantities. However experiments done to date do not
show any effect of number scaling on physical quantities. The results obtained here
with scaling present must be reconciled with this fact.

7 Theory and experiment

Reconciliation begins with a basic fact:All experiments, measurements, observations,
and computations are done in a local region, L of M.HereM represents background
flat cosmological space and time. The regionL includes all locations occupied by us
and occupiable, in principle, by other intelligent beingswith whom we can establish
effective two way communication.

The exact size ofL is not important. One does require that it be small compared
to the volume of the universe. One estimate in the literaturesetsL to be a volume
about 1200 light years in radius presumably centered on the solar system [36].

The nonobservance of the effect of the scaling field,f in experiments means that
the scalar fieldsθ andφ must be roughly constant overL. Equivalently the corre-
sponding gradients,Γ and∆ must be too small to have shown up in local experiments
done to date.1 However this does not exclude the possibility that the scaling field is
cosmological, such as dark matter or dark energy.

For locations outsideL there are no restrictions on these fields. The reason is that
there is no way to communicate with intelligent beings outsideL to determine if their
observations, experiments and computations are consistent with ours where scaling
effects are very small. Such observers are just too far away.

7.1 Comparison of experiment and computation outcomes

Each computation and experiment or measurement, as a physical process, necessarily
occupies a finite region of space and time. For purposes of discussion, specific loca-
tions inM will be associated with computations and measurements. In the presence
of number scaling fields, one would think that scaling would affect the comparison
of the output of a computation at pointx of M with the output of an experiment or
measurement at pointy.

1 Local experiments are those in which systems are prepared insome state and their properties mea-
sured, all within the region,L.
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If the output of the computation atx is a numberr and the output of a measure-
ment aty is a numbers, then the number values associated with these numbers can be
represented byvalf (x)(r) andvalf (y)(s). These are the numerical values or meanings
associated with the computation and measurement outputs.

Comparison of these values requires that they be compared locally at some com-
mon point. Lety be the point. Parallel transform of the computation output value,
in the presence of the scaling field,f , introduces a scaling factor. The result of the
transform can be described by

valf (y)(r) = valf (y), f (x)(valf (x)(r)) =
f (y)
f (x)

valf (x)(r). (56)

Herevalf (y), f (x) is the connection that relates number values inR̄f (x)
x to number values

in R̄f (y)
y . The base sets for these structures are the same.
This argument suggests that scaling affects comparisons between computation

and measurement outputs. No hint of this is seen in physics. This is explained by the
fact that outputs of computations and measurements are not numbers. They are phys-
ical systems in physical states. Comparison of outputs obtained at different locations
requires physical transmission of the output states or the relevant information to a
common location for comparison and interpretation as number values.

Interpretation of the output states as numbers in a base set,such asR, followed by
physical transmission of the numbers is reasonable. In the presence of scaling, phys-
ical transmission must occur before values or meanings are assigned to the outputs.
Only if the ratio f (y)/ f (x) ≃ 1 can parallel transform of number values be a valid
comparison.

Figure 3 is a schematic representation of the effects of parallel transform of val-
ues and physical transmission of outcome state informationas numbers. It shows
clearly the distinction between the two methods of comparison. The figure shows
clearly a fundamental aspect of comparison of theory computations with experiment
outcomes. It shows that the interpretation of the outcome states allows one to com-
pare the outcomes as numbers and see if they agree or not. The figure shows that the
computation agrees with experiment ifr = t.

It is important to note that determination of the number value or meaning of these
outcomes depends onf or, equivalently, the values ofθ andφ at the point of com-
parison. If the value off at the common location of comparison is not known, then
the number values of the computation and experiment outcomes are not known. They
could have any value.

This shows clearly that the scaling fieldf mediates or interprets between out-
comes of physical processes, such as measurements and computations, and theory.
Theoretical expressions are all expressions based on values of mathematical quan-
tities, such as scalars, vectors, operators, etc. Predictions are usually expressed as
numerical values of quantities. As such these are number values in a number struc-
ture.

As physical processes, experiments and computations yieldnumbers as outputs.
These numbers are elements of the base sets of number structures. As such they
can have any value. The values of these numbers depend onf . The value of any
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Fig. 3 Effect of number scaling on comparison of computation and experiment results is shown for two
pointsx andy in M. Both physical transmission of outcome information and parallel transformation of the
associated number values are shown.

computation or measurement at pointx is determined by the value off , or of θ
andφ , at x. In essencef acts as a connection or interpolation between theory and
experiment.

In this sensef acts as as an essential link between theory and experiment. The
values of f serve to assign meaning to the numerical outcomes of computation or
measurements. If the values off are not known in the local regions in which the
computations or experiments are implemented, then one cannot assign values to the
outcomes. The theory experiment and theory computation connections are broken.

8 Summary

Number scaling of number structures in mathematics has beendescribed with de-
tailed examples given. Scaling shows that two distinct concepts, that of number as
elements of the base sets of structures and the values the numbers have in struc-
ture are conflated in the usual use of numbers. The presence ofscaling shows that, by
themselves, the elements of the base sets in number structures have no intrinsic value.
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they acquire values only as elements of the base set within structures. IfS̄s andS̄t are
scaled number structures with scaling parameters,s andt, the value of a numbera
in the base setS, is different inS̄s than it is inS̄t . The effect of number scaling for
number structures extends of other types of mathematical structures, such as vector
spaces, algebras, etc. that include scalars as part of theiraxiomatic description.

Fiber bundles are used to describe the association of numberstructures and vector
spaces to each point of a space and/or time manifold,M. The freedom of scaling
results in the bundle fiber consisting of a collection of all scaled number structures
and vector spaces as in

⋃
s(S̄

s× V̄s). The properties ofM are such that the bundle
overM is a product bundle as inM×

⋃
s(S̄

s× V̄s), p,M. The fiber at pointx of M is
given byp−1(x) =

⋃
s(S̄

s
x× V̄s

x ).
A scalar scaling field,f , is introduced to describe the freedom of choice of scaling

factor at each point ofM. The effect of this field on covariant derivatives of fields
as sections on the fiber bundles shows up as the addition of gradients of a pair of
scalar fields,θ (x)+ iφ(x), to the covariant derivatives in gauge theories and to any
Lagrangian containing field derivatives. Heref (x) = exp(θ (x)+ iφ(x)). Any mass,
zero included, is possible for these fields. Possible physical candidates include the
Higgs, the inflaton, dark matter, dark energy, or none of these.

The effect of these fields on other nonlocal physical and geometric quantities,
was shown for two examples, wave packets and path lengths. These fields appear in
the connections used to parallel transform integrands in the global expression for the
wave packet to a reference location where the integration makes sense.

The same concept applies to the localization of lengths of paths onM. The real
field, θ , affects the distance between two points. This is seen by theappearance of
the gradient ofθ in the geodesic equation.

The lack of local physical evidence for these fields imposes some restrictions.
One is that the gradients of bothθ and φ must be close to 0 in a local region of
cosmological space and time. This is a region in which we, as observers, conduct ex-
periments and computations. It also includes regions within effective communication
distance of us. This takes account of the possibility that intelligent life exists outside
the solar system. There are no restrictions on the gradientsof θ andφ outside the
local region.

Another relevant aspect of the presence of a scalar scaling field is that it has no ef-
fect on comparison of outcomes of computations or measurements with one another.
The reason is that these outcomes are physical systems in physical states. Compari-
son requires transmission of the information in these states to a common location for
local comparison. As a consequence the fact that the scalingfield may have different
values at the locations of the implementation of computations or experiments is not
relevant.

However the scaling field does affect the values assigned to the outcomes of com-
putations or experiments. These outcomes are numbers. Values of these numbers are
needed to compare with theoretical predictions as number values. It follows that the
field, f serves as an interpolator between process outcomes as numbers and values as
theory predictions. Comparison of theory values and experimental outcomes requires
knowledge of the values off in the local region. In the usual setup in the absence of
scaling f = 1 everywhere.
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9 Outlook

There is much to do in the future. Other nonlocal quantities such as momentum, ac-
tions and many other quantities are affected by scaling. These need to be investigated
as well as other effects on the dynamics of quantum mechanical systems. It might
have some input into the measurement problem in quantum mechanics.

In another direction, the manifold needs to be expanded to include general rela-
tivity. The effect of scaling on space and time needs work. Finally one would hope to
be able to link the scalar fieldsθ andφ directly with at least one of the scalar fields
already described in the physics literature.
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