Skip to main content
Log in

Generations of N-atom GHZ state and \(2^n\)-atom W state assisted by quantum dots in optical microcavities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Multipartite entangled state plays a crucial role in quantum applications. We propose theoretical schemes to generate entanglements among several trapped atoms with the help of quantum dots in single-side optical microcavities. In the first scheme, a basic architecture will be built to produce arbitrary N-atom GHZ state by using only one auxiliary photon. Moreover, using a photon state with multiple modes, we can realize \(2^n\)-atom W state. All these schemes are insensitive to the variation of the atom–photon coupling rates and are also right for remotely trapped atoms by using the photonic transmissions, local quantum operations, and classical channel. Simulations show that our schemes are faithful and available with present physical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–143 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Sen, A., Sen, U., Wieéiak, M., Kaszlikowski, D., Żkowski, M.: Multiqubit W states lead to stronger nonclassicality than Greenberger–Horne–Zeilinger states. Phys. Rev. A 68, 062306 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G., Créeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Eosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706–709 (1998)

    Article  ADS  Google Scholar 

  5. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Li, X., Pan, Q., Jing, J., Zhang, J., Xie, C., Peng, K.: Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen Beam. Phys. Rev. Lett. 88, 047904 (2002)

    Article  ADS  Google Scholar 

  8. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Scarani, V., Gisin, N.: Quantum communication between \(N\) partners and Bell’s inequalities. Phys. Rev. Lett. 87, 117901 (2001)

    Article  ADS  Google Scholar 

  10. Durkin, G.A., Simon, C., Bouwmeester, D.: Multiphoton entanglement concentration and quantum cryptography. Phys. Rev. Lett. 88, 187902 (2002)

    Article  ADS  Google Scholar 

  11. Hillery, M., Buz̆ek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

  12. Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret? Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  13. Chen, X.-B., Niu, X.-X., Zhou, X.-J., Yang, Y.-X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12, 365–380 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  MATH  Google Scholar 

  15. Wang, F., Luo, M.X., Chen, X.B., Yang, Y., Wang, X.: Typical universal entangler. Sci. China Phys. Mech. Astro. 57, 1913–1917 (2014)

    Article  ADS  Google Scholar 

  16. Sorensen, A., Mømer, K.: Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000)

    Article  ADS  Google Scholar 

  17. Guo, G.-P., Li, C.-F., Li, J., Guo, G.-C.: Scheme for the preparation of multiparticle entanglement in cavity QED. Phys. Rev. A 65, 042102 (2002)

    Article  ADS  Google Scholar 

  18. Wei, L.F., Liu, Y.-X., Nori, F.: Generation and control of Greenberger–Horne–Zeilinger entanglement in superconducting circuits. Phys. Rev. Lett. 96, 246803 (2006)

    Article  ADS  Google Scholar 

  19. Yang, C.-P., Han, S.: Preparation of Greenberger–Horne–Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED. Phys. Rev. A 70, 062323 (2004)

    Article  ADS  Google Scholar 

  20. Zou, X.B., Pahlke, K., Mathis, W.: Conditional generation of the Greenberger–Horne–Zeilinger state of four distant atoms via cavity decay. Phys. Rev. A 68, 024302 (2003)

    Article  ADS  Google Scholar 

  21. Chen, L., She, W.: Spin–orbit-path hybrid Greenberger–Horne–Zeilinger entanglement and open-destination teleportation with multiple degrees of freedom. Phys. Rev. A 83, 032305 (2011)

    Article  ADS  Google Scholar 

  22. Gräfe, M., Heilmann, R., Perez-Leija, A., Keil, R., Dreisow, F., Heinrich, M., Moya-Cessa, H., Nolte, S., Christodoulides, D.N., Szameit, A.: On-chip generation of high-order single-photon W-states. Nat. Photonics 8, 791–795 (2014)

    Article  ADS  Google Scholar 

  23. Gontcedila, D., Fritzsche, S., Radtke, T.: Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity. Phys. Rev. A 77, 062312 (2008)

    Article  ADS  Google Scholar 

  24. Jin, L., Song, Z.: Generation of Greenberger–Horne–Zeilinger and W states for stationary qubits in a spin network via resonance scattering. Phys. Rev. A 79, 042341 (2009)

    Article  ADS  Google Scholar 

  25. Fang, B.-L., Ye, L.: Scheme for implementing W state, Greenberger–Horne–Zeilinger state, and cluster state via cavity-assisted interaction. J. Opt. Soc. Am. B 29, 841–846 (2009)

    Article  ADS  Google Scholar 

  26. Peng, X., Zhang, J., Du, J., Suter, D.: Ground-state entanglement in a system with many-body interactions. Phys. Rev. A 81, 042327 (2010)

    Article  ADS  Google Scholar 

  27. Lu, C.-Y., Yang, T., Pan, J.-W.: Experimental multiparticle entanglement swapping for quantum networking. Phys. Rev. Lett. 103, 020501 (2009)

    Article  ADS  Google Scholar 

  28. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental oneway quantum computing. Nature 434, 169–76 (2005)

    Article  ADS  Google Scholar 

  29. Gao, W.-B., Lu, C.-Y., Yao, X.-C., Xu, P., Güne, O., Goebel, A., Chen, Y.-A., Peng, C.-Z., Chen, Z.-B., Pan, J.-W.: Experimental demonstration of a hyper-entangled ten-qubit Schröinger cat state. Nat. Phys. 6, 331–335 (2010)

    Article  Google Scholar 

  30. Lu, C.Y., Zhou, X.Q., Güne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.W.: Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91–95 (2007)

    Article  Google Scholar 

  31. Leibfried, D., Knill, E., Seidelin, S., Britton, J., Blakestad, R.B., Chiaverini, J., Hume, D.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Reichle, R., Wineland, D.J.: Creation of a six-atom Schröinger cat-state. Nature 438, 639–642 (2005)

    Article  ADS  Google Scholar 

  32. Zhang, A.-N., Lu, C.-Y., Zhou, X.-Q., Chen, Y.-A., Zhao, Z., Yang, T., Pan, J.-W.: Experimental construction of optical multiqubit cluster states from Bell states. Phys. Rev. A 73, 022330 (2006)

    Article  ADS  Google Scholar 

  33. Wieczorek, W., Krischek, R., Kiesel, N., Michelberger, P., Tóh, G., Weinfurter, H.: Experimental entanglement of a six-photon symmetric Dicke state. Phys. Rev. Lett. 103, 020504 (2009)

    Article  ADS  Google Scholar 

  34. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Ye, J., Kimble, H.J., Katori, H.: Quantum state engineering and precision metrology using state-insensitive light traps. Science 320, 1734–1738 (2008)

    Article  ADS  Google Scholar 

  36. Riedmatten, H.D., Afzelius, M., Staudt, M.U., Simon, C.: A solid-state light-matter interface at the single-photon level. Nature 456, 773–777 (2008)

    Article  ADS  Google Scholar 

  37. Hammerer, K., Sorensen, A.S., Polzik, E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010)

    Article  ADS  Google Scholar 

  38. Weber, B., Specht, H.P., Müler, T., Bochmann, J., Müke, M., Moehring, D.L., Rempe, G.: Photon-Photon entanglement with a single trapped atom. Phys. Rev. Lett. 102, 030501 (2009)

    Article  ADS  Google Scholar 

  39. Fushman, I., Englund, D., Faraon, A., Stoltz, N., Petroff, P., Vuv̆ović, J.: Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008)

    Article  ADS  Google Scholar 

  40. Englund, D., Majumdar, A., Bajcsy, M., Faraon, A., Petroff, P., Vuckovic, J.: Ultrafast photon–photon interaction in a strongly coupled quantum dot-cavity system. Phys. Rev. Lett. 108, 093604 (2012)

    Article  ADS  Google Scholar 

  41. Boozer, A.D., Boca, A., Miller, R., Northup, T.E., Kimble, H.J.: Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007)

    Article  ADS  Google Scholar 

  42. Ritter, S., Neleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., Méke, M., Figueroa, E., Bochmann, J., Rempe, G.: An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012)

    Article  ADS  Google Scholar 

  43. Aoki, T., Parkins, A.S., Alton, D.J., Regal, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102, 083601 (2009)

    Article  ADS  Google Scholar 

  44. Feng, M., Yu, Y.-F., Feng, X.-L., Zhang, Z.-M., Oh, C.H.: Quantum entanglement distribution with hybrid parity gate. Phys. Rev. A 82, 052315 (2010)

    Article  ADS  Google Scholar 

  45. Luo, M.-X., Ma, S.-Y., Chen, X.-B., Wang, X.: Controlled photon switch assisted by coupled quantum dots. Sci. Rep. 5, 11169 (2015)

    Article  ADS  Google Scholar 

  46. Maunz, P., Puppe, T., Schuster, I., Syassen, N., Pinkse, P.W.H., Rempe, G.: Normal-mode spectroscopy of a single-bound-atomcavity system. Phys. Rev. Lett. 94, 033002 (2005)

    Article  ADS  Google Scholar 

  47. Gehr, R., Volz, J., Dubois, G., Steinmetz, T., Colombe, Y., Lev, B.L., Long, R., Estéve, J., Reichel, J.: Cavity-based single atom preparation and high-fidelity hyperfine state readout. Phys. Rev. Lett. 104, 203602 (2010)

    Article  ADS  Google Scholar 

  48. Luo, M.-X., Ma, S.-Y., Chen, X.-B., Wang, X.: Hybrid quantum-state joining and splitting assisted by quantum dots in one-side optical microcavities. Phys. Rev. A 91, 042326 (2015)

    Article  ADS  Google Scholar 

  49. Luo, M.-X., Wang, X.: Parallel photonic quantum computation assisted by quantum dots in one-side optical microcavities. Sci. Rep. 4, 5732 (2014)

    ADS  Google Scholar 

  50. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  51. Xiao, Y.-F., Lin, X.-M., Gao, J., Yang, Y., Han, Z.-F., Guo, G.-C.: Realizing quantum controlled phase flip through cavity QED. Phys. Rev. A 70, 042314 (2004)

    Article  ADS  Google Scholar 

  52. Reithmaier, J.P., et al.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004)

    Article  ADS  Google Scholar 

  53. Yoshie, T., et al.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)

    Article  ADS  Google Scholar 

  54. Warburton, R.J., et al.: Charged excitons in self-assembled semiconductor quantum dots. Phys. Rev. Lett. 79, 5282 (1997)

    Article  ADS  Google Scholar 

  55. Hu, C.Y., et al.: Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas. Phys. Rev. B 58, R1766–R1769 (1998)

    Article  ADS  Google Scholar 

  56. Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74, 4087–4090 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Warburton, R.J., et al.: Charged excitons in self-assembled semiconductor quantum dots. Phys. Rev. Lett. 79, 5282–5285 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 61303039, 61201253), the Fundamental Research Funds for the Central Universities (No. 2682014CX095), and Science Foundation Ireland (SFI) under the International Strategic Cooperation Award Grant No. SFI/13/ISCA/2845.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, MX., Deng, Y., Li, HR. et al. Generations of N-atom GHZ state and \(2^n\)-atom W state assisted by quantum dots in optical microcavities. Quantum Inf Process 14, 3661–3676 (2015). https://doi.org/10.1007/s11128-015-1087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1087-9

Keywords

Navigation