Skip to main content
Log in

Application of practical noiseless linear amplifier in no-switching continuous-variable quantum cryptography

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a modified no-switching continuous-variable quantum key distribution protocol by employing a practical noiseless linear amplifier at the receiver to increase the maximal transmission distance and tolerable excess noise. A security analysis is presented to derive the secure bound of the protocol in presence of a Gaussian noisy lossy channel. Simulation results show that the modified protocol can not only transmit longer distance and tolerate more channel excess noise than the original protocol, but also distribute more secure keys in the enhanced region where we define a critical point to separate the enhanced and degenerative region. This critical point presents the condition of using a practical noiseless linear amplifier in the no-switching continuous-variable quantum cryptography, which is meaningful and instructive to implement a practical experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1305 (2009)

    Article  ADS  Google Scholar 

  3. Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    Article  MATH  ADS  Google Scholar 

  4. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012)

    Article  ADS  Google Scholar 

  5. Madsen, L.S., Usenko, V.C., Lassen, M., Filip, R., Andersen, U.L.: Continuous variable quantum key distribution with modulated entangled states. Nat. Commun. 3, 1083–1091 (2012)

    Article  ADS  Google Scholar 

  6. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7, 378–381 (2013)

    Article  ADS  Google Scholar 

  7. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902(1-4) (2002)

    Article  ADS  Google Scholar 

  8. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504(1-4) (2004)

    Article  ADS  Google Scholar 

  9. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Coherent-state quantum key distribution without random basis switching. Phys. Rev. A 73, 022316(1-9) (2006)

    Article  ADS  Google Scholar 

  10. Lance, A.M., Symul, T., Sharma, V., Weedbrook, C., Ralph, T.C., Lam, P.K.: No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett. 95, 180503(1-4) (2005)

    Article  ADS  Google Scholar 

  11. Pirandola, S., Braunstein, S.L., Lloyd, S.: Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett. 101, 200504(1-4) (2008)

    Article  ADS  Google Scholar 

  12. Renner, R., Cirac, J.I.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102, 110504(1-4) (2009)

    Article  ADS  Google Scholar 

  13. Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110, 030502(1-5) (2013)

    Article  ADS  Google Scholar 

  14. Jouguet, P., Kunz-Jacques, S., Leverrier, A.: Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 84, 062317(1-7) (2011)

    Article  ADS  Google Scholar 

  15. Zhang, Y.-C., Li, Z., Weedbrook, C., Yu, S., Gu, W., Sun, M., Peng, X., Guo, H.: Improvement of two-way continuous-variable quantum key distribution using optical amplifiers. J. Phys. B 47, 035501 (2014)

    Article  ADS  Google Scholar 

  16. Caves, C.M., Combes, J., Jiang, Z., Pandey, Z.S.: Quantum limits on phase-preserving linear amplifiers. Phys. Rev. A 86, 063802(1–21) (2012)

  17. Ralph, T. C., Lund, A. P.: Quantum Communication Measurement and Computing Proceedings of 9th International Conference, pp. 155–160 (2009)

  18. Xiang, G.Y., Ralph, T.C., Lund, A.P., Walk, N., Pryde, G.J.: Heralded noiseless linear amplification and distillation of entanglement. Nat. Photon. 4, 316–319 (2010)

    Article  Google Scholar 

  19. Usuga, M.A., Müller, C.R., Wittmann, C., Marek, P., Filip, R., Marquardt, C., Leuchs, G., Andersen, U.L.: Noise-powered probabilistic concentration of phase information. Nat. Phys. 6, 767–771 (2010)

    Article  Google Scholar 

  20. Ferreyrol, F., Barbieri, M., Blandino, R., Fossier, S., Tualle-Brouri, R., Grangier, P.: Implementation of a nondeterministic optical noiseless amplifier. Phys. Rev. Lett. 104, 123603(1-4) (2010)

    Article  ADS  Google Scholar 

  21. Zavatta, A., Fiurášek, J., Bellini, M.: A high-fidelity noiseless amplifier for quantum light states. Nat. Photon. 5, 52–60 (2011)

    Article  ADS  Google Scholar 

  22. Ferreyrol, F., Blandino, R., Barbieri, M., Tualle-Brouri, R., Grangier, P.: Experimental realization of a nondeterministic optical noiseless amplifier. Phys. Rev. A 83, 063801(1-9) (2011)

    Article  ADS  Google Scholar 

  23. Dunjko, V., Andersson, E.: Truly noiseless probabilistic amplification. Phys. Rev. A 86, 042322(1-10) (2012)

    Article  ADS  Google Scholar 

  24. Partanen, M., Häyrynen, T., Oksanen, J., Tulkki, J.: Noiseless amplification of weak coherent fields exploiting energy fluctuations of the field. Phys. Rev. A 86, 063804(1-5) (2012)

    Article  ADS  Google Scholar 

  25. Pandey, S., Jiang, Z., Combes, J., Caves, C.M.: Quantum limits on probabilistic amplifiers. Phys. Rev. A 88, 033852(1-21) (2013)

    Article  ADS  Google Scholar 

  26. Walk, N., Lund, A.P., Ralph, T.C.: Nondeterministic noiseless amplification via non-symplectic phase space transformations. New J. Phys. 15, 073014(1-24) (2013)

    Article  ADS  Google Scholar 

  27. Chiribella, G., Xie, J.: Optimal design and quantum benchmarks for coherent state amplifiers. Phys. Rev. Lett. 110, 213602(1-5) (2013)

    Article  ADS  Google Scholar 

  28. McMahon, N.A., Lund, A.P., Ralph, T.C.: Optimal architecture for a nondeterministic noiseless linear amplifier. Phys. Rev. A 89, 023846(1-9) (2014)

    Article  ADS  Google Scholar 

  29. Blandino, R., Leverrier, A., Barbieri, M., Etesse, J., Grangier, P., Tualle-Brouri, R.: Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Phys. Rev. A 86, 012327(1-8) (2012)

    Article  ADS  Google Scholar 

  30. Fiurášek, J., Cerf, N.J.: Gaussian postselection and virtual noiseless amplification in continuous-variable quantum key distribution. Phys. Rev. A 86, 060302(1-5) (2012)

    ADS  Google Scholar 

  31. Walk, N., Ralph, T.C., Symul, T., Lam, P.K.: Security of continuous-variable quantum cryptography with gaussian postselection. Phys. Rev. A 87, 020303(1-4) (2013)

    Article  ADS  Google Scholar 

  32. Zhang, Y., Li, Z., Weedbrook, C., Marshall, K., Pirandola, S., Yu, S., Guo, H.: Noiseless linear amplifiers in entanglement-based continuous-variable quantum key distribution. Entropy 17, 4547–4562 (2015)

    Article  ADS  Google Scholar 

  33. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238–241 (2003)

    Article  ADS  Google Scholar 

  34. Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states. Proc. R. Soc. London Ser. A 461, 207–235 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Communication. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  36. Navascués, M., Grosshans, F., Acín, A.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97, 190502(1-4) (2006)

    Article  ADS  Google Scholar 

  37. García-Patrón, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503(1-4) (2006)

    Article  ADS  Google Scholar 

  38. Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101(1-25) (2011)

    Article  ADS  Google Scholar 

  39. Brida, G., Degiovanni, I.P., Genovese, M., Piacentini, F., Traina, P., Della Frera, A., Tosi, A., Bahgat Shehata, A., Scarcella, C., Gulinatti, A., Ghioni, M., Polyakov, S.V., Migdall, A., Giudice, A.: An extremely low-noise heralded single-photon source: a breakthrough for quantum technologies. Appl. Phys. Lett. 101, 221112(1-4) (2012)

    Article  ADS  Google Scholar 

  40. Xu, B., Tang, C., Chen, H., Zhang, W., Zhu, F.: Improving the maximum transmission distance of four-state continuous-variable quantum key distribution by using a noiseless linear amplifier. Phys. Rev. A 87, 062311(1-8) (2013)

    ADS  Google Scholar 

  41. Chrzanowski, H.M., Walk, N., Assad, S.M., Janousek, J., Hosseini, S., Ralph, T.C., Lam, P.K.: Measurement-based noiseless linear amplification for quantum communication. Nat. Photon. 8, 333–338 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Basic Research Program of China (973 Pro-gram) under Grant 2012CB3156052, in part by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61225003), in part by the State Key Program of National Natural Science of China (Grant No. 61531003), in part by the Fund of State Key Laboratory of Information Photonics and Optical Communications, and in part by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yichen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yu, S. & Guo, H. Application of practical noiseless linear amplifier in no-switching continuous-variable quantum cryptography. Quantum Inf Process 14, 4339–4349 (2015). https://doi.org/10.1007/s11128-015-1095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1095-9

Keywords

Navigation