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In this paper we present two new classes of binary quantum codes with minimum
distance of at least three, by self-complementary self-dual orientable embeddings of
“voltage graphs” and “Paley graphs in the Galois field GF (pr)”, where p ∈ P and
r ∈ Z+. The parameters of two new classes of quantum codes are [[(2k′ + 2)(8k′ +
7), 2(8k′2 +7k′), dmin]] and [[(2k′+2)(8k′ +9), 2(8k′2 +9k′ +1), dmin]] respectively,
where dmin ≥ 3. For these quantum codes, the code rate approaches 1 as k′ goes to
infinity.
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1. Introduction

Quantum error-correcting codes (QEC) plays an important role in the theory of
quantum information and computation. A main difficult to realize quantum compu-
tation is decoherence of quantum bits due to the interaction between the system and
the surrounding environments. The QEC provide an efficient way to overcome de-
coherence. The first quantum code [[9, 1, 3]] was discovered by Shor [1]. Calderbank
et al. [2] have introduced a systematic way for constructing the QEC from classical
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error-correcting code. The problem of constructing toric quantum codes has moti-
vated considerable interest in the literature. This problem was generalized within
the context of surface codes [8] and color codes [3]. The most popular toric code was
the first proposed by Kitaev’s [5]. This code defined on a square lattic of size m×m
on the torus. The parameters of this class of codes are [[n, k, d]] = [[2m2, 2,m]]. In
the similar way, the authors in [7] have introduced a construction of topological
quantum codes in the projective plane RP 2. They showed that the original Shor’s
9-qubit repetition code is one of these codes which can be constructed in a planar
domain.

Leslie in [6] proposed a new type of sparse CSS quantum error correcting codes
based on the homology of hypermaps defined on an m × m square lattice. The
parameters of hypermap-homology codes are [[(32 )m

2, 2,m]]. These codes are more
efficient than Kitaev’s toric codes. This seemed to suggest that good quantum codes
maybe constructed by using hypergraphs. But there are other surface codes with
better parameters than the [[2m2, 2,m]] toric code. There exist surface codes with
parameters [[m2 + 1, 2,m]], called homological quantum codes. These codes were
introduced by Bombin and Martin-Delgado [8].

Authors in [9] presented a new class of toric quantum codes with parameters
[[m2, 2,m]], where m = 2(l + 1), l ≥ 1. Sarvepalli [10] studied relation between
surface codes and hypermap-homology quantum codes. He showed that a canon-
ical hypermap code is identical to a surface code while a noncanonical hypermap
code can be transformed to a surface code by CNOT gates alone. Li et al. [17]
were given a large number of good binary quantum codes of minimum distances
five and six by Steane’s Construction. In [18] good binary quantum stabilizer codes
are obtained via graphs of Abelian and non-Abelian groups schemes. In [19], Qian
presented a new method of constructing quantum codes from cyclic codes over finite
ring F2 + vF2.

Our aim in this work is to present two new classes of binary quantum codes with
parameters [[(2k′+2)(8k′+7), 2(8k′2+7k′), dmin]] and [[(2k′+2)(8k′+9), 2(8k′2+
9k′ +1), dmin]] respectively, based on results of Hill in self-complementary self-dual
graphs [13]. Binary quantum codes are defined by pair (HX , HZ) of Z2-matrices
with HXHT

Z = 0. These codes have parameters [[n, k, dmin]], where k logical qubits
are encoded into n physical qubits with minimum distance dmin. A minimum dis-
tance dmin code can correct all errors up to ⌊dmin−1

2 ⌋ qubits. The code rate for
these quantum codes of length n = (2k′ + 2)(8k′ + 7) and n = (2k′ + 2)(8k′ + 9) is

determined by k
n
= 2(8k′2+7k′)

(2k′+2)(8k′+7) and k
n
= 2(8k′2+9k′+1)

(2k′+2)(8k′+9) , and this rate approaches

1 as k
′

goes to infinity.
The paper is organized as follows. The definition simplices, chain complexes

and homology group are recalled in Section 2. In Section 3 we shall briefly present
the voltage graphs and their derived graphs. In Section 4, we give a brief outline of
self-complementary self-dual graphs. Section 5 is devoted to present new classes of
binary quantum codes by using self-complementary self-dual orientable embeddings
of voltage graphs and Paley graphs. The paper is ended with a brief conclusion.
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2. Homological algebra

In this section, we review some fundamental notions of homology spaces. For more
detailed information about homology spaces, refer to [4], [12].

Simplices. Let m,n ∈ N, m ≥ n. Let moreover the set of points {υ0, υ1, ..., υn} of
R

m be geometrically independent. A n-simplex ∆ is a subset of Rm given by

∆ = {x ∈ R
m|x =

n∑

i=0

tiυi; 0 ≤ ti ≤ 1;
n∑

i=0

ti = 1}. (2.1)

Chain complexes. Let K be a simplicial complex and p a dimension. A p-chain
is a formal sum of p-simplices in K. The standard notation for this is c =

∑

i niσi,
where ni ∈ Z and σi a p-simplex in K. Let Cp(K) be the set of all p-chains on K.
The boundary homomorphism ∂p : Cp(K) −→ Cp−1(K) is defined as

∂k(σ) =

k∑

j=0

(−1)j [υ0, υ1, ..., υj−1, υj+1, ..., υk]. (2.2)

The chain complex is the sequence of chain groups connected by boundary homo-
morphisms,

· · ·
∂p+2

−→ Cp+1
∂p+1

−→ Cp

∂p

−→ Cp−1
∂p−1

−→ · · · (2.3)

Cycles and boundaries. We are interested in two subgroups of Cp(K), cycle and
boundary groups. The p-th cycle group is the kernel of ∂p : Cp(K) −→ Cp−1(K),
and denoted as Zp = Zp(K). The p-th boundary group is the image of ∂p+1 :
Cp+1(K) −→ Cp(K), and denoted as Bp = Bp(K).

Definition 2.1 (Homology group, Betti number). The p-th homology group Hp

is the p-th cycle group modulo the p-th boundary group, Hp = Zp/Bp. The p-th
Betti number is the rank (i.e. the number of generators) of this group, βp=rank
Hp. So the first homology group H1 is given as

H1 = Z1/B1. (2.4)

From the algebraic topology, we can see that the group H1 only depends, up to
isomorphisms, on the topology of the surface [4]. In fact

H1 ≃ Z
2g
2 . (2.5)

where g is the genus of the surface, i.e. the number of “holes” or “handles”. We
then have

|H1| = 22g. (2.6)
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3. Voltage graphs and their derived graphs

Let G = (V,E) be a multigraph for which every edge has been assigned a direction,
and V be a finite group. A voltage assignment of G in V is a function α : E → V ,
that labels the arcs of G with elements of V . The triple (G,V , α) is called an (or-
dinary) voltage graph. The derived graph (lift, or covering) G′ = (V ′, E′) (also
denoted Gα), is defined as follows:

i) V ′ = V × V

ii) If e = (a, b) ∈ E where a, b ∈ V and α(e) = v for some v ∈ V , then (e, u) = eu =
(au, buv) ∈ E′ where au, buv ∈ V ′ for all u ∈ V .

Definition 3.1. Let Zt denote Z2 × Z2 × · · · × Z2
︸ ︷︷ ︸

t

. A binary vector has even weight

if it has an even number of 1’s and has odd weight otherwise. An ε-vector is a vector
in Z

t−1
2 with even weight. A σ-vector is a vector in Z

t−1
2 with odd weight. We label

the ε-vectors so that ε1 < ε2 < · · · < ε2t−2 . Similarly, label the σ-vectors so that
σ1 < σ2 < · · · < σ2t−2 .

Definition 3.2. A 1ε-vector is a vector in Z
t
2 where the first entry is a one and the

remainder of the vector is an ε-vector. The 1σ-, 0ε- and 0σ-vectors can be defined
in a similar fashion. A 1ε-edge is an edge with a 1ε-vector as a voltage assignment.
The 1σ-, 0ε- and 0σ-edges can be defined in a similar fashion. For example, when
t = 3, we have the following table:

0ε1 = 000 = 0 0σ1 = 001 = 1
0ε2 = 011 = 3 0σ2 = 010 = 2
1ε1 = 100 = 4 1σ1 = 101 = 5
1ε2 = 111 = 7 1σ2 = 110 = 6

Definition 3.3. A link is an edge which is incident with 2 different vertices. A
loop is an edge which has two incidences with the same vertex. A half edge is an
edge together with one of its incident vertices.

Definition 3.4. Let t ≥ 3. Let Ht be a voltage graph defined as follows over
the group (Zt

2,⊕); Ht has two vertices, u and v. There are 2t−1 links between u
and v, with voltage assignments 0σ1, . . . , 0σ2t−2 and 1ε1, . . . , 1ε2t−2 (equivalently,
all possible vectors in Z

t
2 with odd weight). There are 2t−1 half edges about v with

voltage assignments 0σ1, . . . , 0σ2t−2 and 1σ1, . . . , 1σ2t−2 . Similarly, there are 2t−1−1
half edges about u with voltage assignments 0ε2, 0ε3, . . . , 0ε2t−2 and 1ε1, . . . , 1ε2t−2 .

4. Self-complementary self-dual graphs

Let G = (V,E) be a simple graph. The complement G of G has the same vertices
as G, and every pair of vertices are adjacent by an edge in G if and only if they are
not adjacent in G. A graph G is self-complementary if G ∼= G. Let M = (V,E, F )
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be a fixed map of G, with dual map M∗ = (F ∗, E∗, V ∗). M is graphically self-dual
if (V,E) ∼= (F ∗, E∗).

Theorem 4.1. If G is a self-complementary graph on m vertices, then |E(G)| =
m(m−1)

4 , and m ≡ 0 or 1 (mod 4).

Proof. See [14].

Theorem 4.2. If G is a self-complementary self-dual graph on m vertices with
a self-dual embedding on an orientable surface of genus g, then m ≡ 0 or 1 (mod
8). In particular, if m = 8 + 8k′, then g = 8(k′2) + 7k′, and if m = 9 + 8k′, then
g = 8(k′2) + 9k′ + 1.

Proof. See [13].

5. Quantum codes from graphs on surfaces

The idea of constructing CSS (Calderbank-Shor-Steane) codes from graphs em-
bedded on surfaces has been discussed in a number of papers. See for detailed
descriptions e.g. [11]. Let X be a compact, connected, oriented surface (i.e. 2-
manifold) with genus g. A tiling of X is defined to be a cellular embedding of an
undirected (simple) graph G = (V,E) in a surface. This embedding defines a set of
faces F . Each face is described by the set of edges on its boundary. This tiling of
surface is denoted M = (V,E, F ). The dual graph G is the graph G∗ = (V ∗, E∗)
such that:

i) One vertex of G∗ inside each face of G,

ii) For each edge e of G there is an edge e∗ of G∗ between the two vertices of
G∗ corresponding to the two faces of G adjacent to e.

It can be easily seen that, there is a bijection between the edges of G and the
edges of G∗.

There is an interesting relationship between the number of elements of a lattice
embedded in a surface and its genus. The Euler characteristic of X is defined as its
number of vertices (|V |) minus its number of edges (|E|) plus its number of faces
(|F |), i.e.,

χ = |V | − |E|+ |F |. (5.1)

For closed orientable surfaces we have

χ = 2(1− g). (5.2)
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The surface code associated with a tiling M = (V,E, F ) is the CSS code defined by
the matrices HX and HZ such that HX ∈ M|V |,|E|(Z2) is the vertex-edge incidence
matrix of the tiling and HZ ∈ M|F |,|E|(Z2) is the face-edge incidence matrix of the
tiling. Therefore, from (X,G) is constructed a CSS code with parameters [[n, k, d]].
where n is the number of edges of G, k = 2g (by (2.6)) and d is the shortest
non-boundary cycle in G or G∗. In this work, the minimum distance of quantum
codes by a parity check matrix H (or generator matrix) is obtained. For a detailed
information to compute the minimum distance, we refer the reader to [15].

5.1. New class of [[(2k′ + 2)(8k′ + 7), 2(8k′2 + 7k′), dmin]] binary

quantum codes from embeddings of voltage graphs

Our aim in this subsection is to construct new class of binary quantum codes
by using self-complementary self-dual orientable embeddings of voltage graphs.
Let Gt be the lift of voltage graph Ht defined over the group (Zt

2,⊕). Since
|V (Gt)| = |V (Ht)| × |Zt

2| = 2 × 2t, for t = 3, m = |V (Gt)| = 23 × 2 = 24 ≡ 0

(mod 8). On the other hand, since by Theorems in Section 4, |E(G)| = m(m−1)
4

and m = 8 + 8 × 1, thus |E(G)| = 60 and g = 15. From Definition 3.4 we get the
following adjacency matrix for t = 3:

A =





IXX +XII +XXX XII + IXI + IIX +XXX

XII + IXI + IIX +XXX IIX + IXI +XIX +XXI





where I is an 2 × 2 identity matrix and X is an Pauli matrix. Also, we will some-
times use notation where we omit the tensor signs. For example IXX is shorthand
for I ⊗X ⊗X . After finding the vertex-edge incidence matrix HX using the above
adjacency matrix and the face-edge incidence matrix HZ by Gaussian elimination
and the standard form of the parity check matrix in [15], one can be easily seen
that HXHT

Z = 0 and dmin = 3. Therefore, the code with parameters [[60, 30, 3]] is
constructed.

In general, the adjacency matrix A = (aij)2t+1×2t+1 of derived voltage graph by
Definition 3.4, is

A =





B C

C D





where

B =
1

2
(I +X)⊗ {(I +X)⊗ (I +X)⊗ · · · ⊗ (I +X)

︸ ︷︷ ︸

t−1

+

+(I −X)⊗ (I −X)⊗ · · · ⊗ (I −X)
︸ ︷︷ ︸

t−1

} − I ⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

t

;
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C =
1

2
{(I +X)⊗ (I +X)⊗ · · · ⊗ (I +X)
︸ ︷︷ ︸

t

−

− (I −X)⊗ (I −X)⊗ · · · ⊗ (I −X)
︸ ︷︷ ︸

t

};

D =
1

2
(I +X)⊗ {(I +X)⊗ (I +X)⊗ · · · ⊗ (I +X)

︸ ︷︷ ︸

t−1

−

− (I −X)⊗ (I −X)⊗ · · · ⊗ (I −X)
︸ ︷︷ ︸

t−1

}.

With finding the matrix HX using the above adjacency matrix A = (aij)2t+1×2t+1

and the matrix HZ by Gaussian elimination and the standard form of the parity
check matrix, the code minimum distance of at least three is obtained.

After determining dmin, by using the Theorems in Section 4 the class of codes
with parameters [[(2k′ + 2)(8k′ + 7), 2(8k′2 + 7k′), dmin]], k

′ ≥ 1 is constructed.

5.2. New class of [[(2k′ +2)(8k′ +9), 2(8k′2 +9k′ + 1), dmin]] binary
quantum codes from embeddings of Paley graphs

The construction of this class will be based on self-complementary self-dual ori-
entable embeddings of Paley graphs in the Galois field GF (pr), where p ∈ P and
r ∈ Z

+.

Definition 5.2.1. Let G be a group and S be a subset of G\{id}. We say that a
graph X is a Cayley graph with connection set S, written X=Cay(G,S), if

i) V (X) = G,

ii) E(X) = {{g, sg}|g ∈ G, s ∈ S}.

Definition 5.2.2. Let m = pr ≡ 1 (mod 8), p ∈ P and r ∈ Z
+. A Paley graph is

a cayley graph Pm=Cay(Xm,∆m), where Xm = Zp × Zp × · · · × Zp
︸ ︷︷ ︸

m

is the additive

group of the Galois field GF (pr) and ∆m = {1, x2, x4, . . . , xm−3} for a primitive
element x of GF (pr).

Let G = (V,E) be a self-complementary self-dual graph on m vertices. From

Theorem 4.1, we know that |E(G)| = m(m−1)
4 . Also, from Theorem 4.2 and Def-

inition 5.2.2, with a self-dual embedding on an orientable surface of genus g, we
know that if m = 9 + 8k′ ≡ 1 (mod 8), then g = 8(k′2) + 9k′ + 1. Therefore,
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|E(G)| = (9+8k′)(8+8k′)
4 = (9 + 8k′)(2 + 2k′). Since in this self-dual embedding on

an orientable surface the code minimum distance is at least three. Thus the code
parameters are given by: the code minimum distance is dmin ≥ 3; the code length
is n = |E(G)| = (9+8k′)(2+2k′) and k = 2g = 2(8k′2+9k′+1). Consequently, the
class of codes with parameters [[(2k′ + 2)(8k′ + 9), 2(8k′2 + 9k′ + 1), dmin]], k

′ ≥ 0
is obtained.

Example 5.2.1. Let m = 32 ≡ 1 (mod 8). Then P9=Cay(X9,∆9), where X9 =
Z3 × Z3 is the additive group of the Galois field GF (32) and ∆9 = {1, x2, x4, x6}
for a primitive element x of GF (32). In fact, ∆9 is the set of all squares in
GF (32). Let p(x) ∈ Z3[x] be an irreducible polynomial of degree 2. Then the
elements of Z3[x]/〈p(x)〉 will be polynomials of degree 1 or less and there will be
32 = 9 such polynomials. So, in terms of representatives, the elements of GF (9) are
{ax+ b|a, b ∈ Z3}. We denote these as:

g0 = 0x+ 0 g3 = 1x+ 0 g6 = 2x+ 0

g1 = 0x+ 1 g4 = 1x+ 1 g7 = 2x+ 1

g2 = 0x+ 2 g5 = 1x+ 2 g8 = 2x+ 2

Based on results of Conrad in finite fields [16], the monic irreducible quadratics in
Z3[x] are x2 + 1, x2 + x + 2 and x2 + 2x+ 2. Let p(x) = x2 + x + 2. Then g3 = x
is a generator of the nonzero elements in the field Z3[x]/〈x

2 + x+ 2〉.

g3 = x = g3

g23 = x2 = −x− 2 = 2x+ 1 = g7

g33 = x(2x+ 1) = 2x2 + x = 2(−x− 2) + x = −x− 1 = 2x+ 2 = g8

g43 = x(2x+ 2) = 2x2 + 2x = 2(−x− 2) + 2x = −4 = 2 = g2

g53 = x(2) = 2x = g6

g63 = x(2x) = 2x2 = 2(−x− 2) = −2x− 4 = x+ 2 = g5

g73 = x(x + 2) = x2 + 2x = −x− 2 + 2x = x− 2 = x+ 1 = g4

g83 = x(x + 1) = x2 + x = −x− 2 + x = −2 = 1 = g1

By Definitions in Subsection 5.2, we get the following adjacency matrix for GF (9):
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A =

















0 1 1 0 0 1 0 1 0
1 0 1 1 0 0 0 0 1
1 1 0 0 1 0 1 0 0
0 1 0 0 1 1 0 0 1
0 0 1 1 0 1 1 0 0
1 0 0 1 1 0 0 1 0
0 0 1 0 1 0 0 1 1
1 0 0 0 0 1 1 0 1
0 1 0 1 0 0 1 1 0

















After finding the matrices HX and HZ using the Theorems in Section 4, the code
with parameters [[18, 2, 3]] is obtained. Note that the matrix HZ is given by Gaus-
sian elimination and the standard form of the parity check matrix in [15].

6. Conclusion

We have considered the presentation of two new classes of binary quantum codes
by using self-complementary self-dual orientable embeddings of voltage graphs and
Paley graphs. These codes is superior to quantum codes presented in other refer-
ences. We point out the classes [[(2k′ + 2)(8k′ + 7), 2(8k′2 + 7k′), dmin(≥ 3)]] and
[[(2k′ + 2)(8k′ + 9), 2(8k′2 + 9k′ + 1), dmin(≥ 3)]] of quantum codes achieving the
best ratio k

n
.
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