Skip to main content
Log in

Four-state quantum key distribution exploiting maximum mutual information measurement strategy

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a four-state quantum key distribution (QKD) scheme using generalized measurement of nonorthogonal states, the maximum mutual information measurement strategy. Then, we analyze the eavesdropping process in intercept–resend and photon number splitting attack scenes. Our analysis shows that in the intercept–resend and photon number splitting attack eavesdropping scenes, our scheme is more secure than BB84 protocol and has higher key generation rate which may be applied to high-density QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C., Brassard G. (eds.): In: Proceedings of IEEE International Conference on Computers. IEEE, New York (1984)

  2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)

    Article  ADS  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  5. Bennett, C.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bechmann-Pasquinucci, H., Peres, A.: Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85(15), 3313–3316 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  7. Phoenix, S.J.D., Barnett, S.M., Chefles, A.: Three-state quantum cryptography. J. Mod. Opt. 47(2–3), 507–516 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. Li, Z., Zhang, Y.-C., Xu, F., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052301 (2014)

    Article  ADS  Google Scholar 

  9. Marshall, K., Weedbrook, C.: Device-independent quantum cryptography for continuous variables. Phys. Rev. A 90, 042311 (2014)

    Article  ADS  Google Scholar 

  10. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    Article  ADS  Google Scholar 

  11. Scarani, V., Acín, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)

    Article  ADS  Google Scholar 

  12. Li, Y., Bao, W.-S., Li, H.-W., Zhou, C., Wang, Y.: Passive decoy-state quantum key distribution using weak coherent pulses with intensity fluctuations. Phys. Rev. A 89(3), 032329 (2014)

    Article  ADS  Google Scholar 

  13. Xu, F., Xu, H., Lo, H.-K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)

    Article  ADS  Google Scholar 

  14. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  15. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  16. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  17. Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  18. Zhang, P., Aungskunsiri, K., Martín-López, E., Wabnig, J., Lobino, M., Nock, R.W., Munns, J., Bonneau, D., Jiang, P., Li, H.W., Laing, A., Rarity, J.G., Niskanen, A.O., Thompson, M.G., O’Brien, J.L.: J. Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client. Phys. Rev. Lett. 112, 130501 (2014)

    Article  ADS  Google Scholar 

  19. Laing, A., Scarani, V., Rarity, J.G., O’Brien, J.L.: Reference-frame-independent quantum key distribution. Phys. Rev. A 82, 012304 (2010)

    Article  ADS  Google Scholar 

  20. Wabnig, J., Bitauld, D., Li, H., Laing, A., O’Brien, J., Niskanen, A.: Demonstration of free-space reference frame independent quantum key distribution. New J. Phys. 15(7), 073001 (2013)

    Article  ADS  Google Scholar 

  21. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  22. Sasaki, M., Hirota, O.: Optimum decision scheme with a unitary control process for binary quantum-state signals. Phys. Rev. A 54, 2728–2736 (1996)

    Article  ADS  Google Scholar 

  23. Lu, Y., Coish, N., Kaltenbaek, R., Hamel, D.R., Croke, S., Resch, K.J.: Minimum-error discrimination of entangled quantum states. Phys. Rev. A 82(4), 042340 (2010)

    Article  ADS  Google Scholar 

  24. Huttner, B., Muller, A., Gautier, J.D., Zbinden, H., Gisin, N.: Unambiguous quantum measurement of nonorthogonal states. Phys. Rev. A 54(5), 3783–3789 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  25. Dusek, M., Jahma, M., Lutkenhaus, N.: Unambiguous state discrimination in quantum cryptography with weak coherent states. Phys. Rev. A 62(2), 022306 (2000)

    Article  ADS  Google Scholar 

  26. Clarke, R., Chefles, A., Barnett, S., Riis, E.: Experimental demonstration of optimal unambiguous state discrimination. Phys. Rev. A 63(4), 040305 (2001)

    Article  ADS  Google Scholar 

  27. Croke, S., Andersson, E., Barnett, S.M., Gilson, C.R., Jeffers, J.: Maximum confidence quantum measurements. Phys. Rev. Lett. 96, 070401 (2006)

    Article  ADS  Google Scholar 

  28. Jiménez, O., Solís-Prosser, M.A., Delgado, A., Neves, L.: Maximum-confidence discrimination among symmetric qudit states. Phys. Rev. A 84, 062315 (2011)

    Article  ADS  Google Scholar 

  29. Croke, S., Mosley, P., Barnett, S., Walmsley, I.: Maximum confidence measurements and their optical implementation. Eur. Phys. J. D 41(3), 589–598 (2007)

    Article  ADS  Google Scholar 

  30. Clarke, R., Kendon, V., Chefles, A., Barnett, S., Riis, E., Sasaki, M.: Experimental realization of optimal detection strategies for overcomplete states. Phys. Rev. A 64(1), 012303 (2001)

    Article  ADS  Google Scholar 

  31. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51(3), 1863–1869 (1995)

    Article  ADS  Google Scholar 

  32. Sasaki, M., Barnett, S.M., Jozsa, R., Osaki, M., Hirota, O.: Accessible information and optimal strategies for real symmetrical quantum sources. Phys. Rev. A 59, 3325–3335 (1999)

    Article  ADS  Google Scholar 

  33. Yuen, H.P., Kennedy, R.S., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inform. Theory 21(2), 125–134 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ban, M., Kurokawa, K., Momose, R., Hirota, O.: Optimum measurements for discrimination among symmetric quantum states and parameter estimation. Int. J. Theor. Phys. 36(6), 1269–1288 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Grazioso, F., Grosshans, F.: Quantum-key-distribution protocols without sifting that are resistant to photon-number-splitting attacks. Phys. Rev. A 88, 052302 (2013)

    Article  ADS  Google Scholar 

  36. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)

    Article  ADS  Google Scholar 

  37. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)

    Article  ADS  Google Scholar 

  38. Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photonics 1(2), 238 (2009)

    Article  Google Scholar 

  39. Franke-Arnold, S., Jeffers, J.: Unambiguous state discrimination in high dimensions. Eur. Phys. J. D 66(7), 1–4 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Wei Chen for helpful suggestions. This work is supported by the Fundamental Research Funds for the Central Universities, Program for Key Science and Technology Innovative Research Team of Shaanxi Province, and the National Natural Science Foundation of China ( Grant Nos. 2013KCT-05, 11374008, 11174233, 11374238, and 11374239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, DX., Zhang, P., Li, HR. et al. Four-state quantum key distribution exploiting maximum mutual information measurement strategy. Quantum Inf Process 15, 881–891 (2016). https://doi.org/10.1007/s11128-015-1173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1173-z

Keywords

Navigation