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The sum of entropic uncertainties for the measurement of two non-commuting observables is
not always reduced by the amount of entanglement (quantum memory) between two parties, and
in certain cases may be impacted by quantum correlations beyond entanglement (discord). An
optimal lower bound of entropic uncertainty in the presence of any correlations may be determined
by fine-graining. Here we express the uncertainty relation in a new form where the maximum
possible reduction of uncertainty is shown to be given by the extractable classical information. We
show that the lower bound of uncertainty matches with that using fine-graining for several examples
of two-qubit pure and mixed entangled states, and also separable states with non-vanishing
discord. Using our uncertainty relation we further show that even in the absence of any quantum
correlations between the two parties, the sum of uncertainties may be reduced with the help of
classical correlations.
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I. INTRODUCTION

A fundamental difference from classical theory is that quantum theory limits the precision of the measurement
outcomes for the measurement of two non-commuting observables. This quantum feature called uncertainty relation
was first introduced by Heisenberg [1], and then extended by Robertson [2] for more general observables. The lower
bound of the Heisenberg uncertainty relation is state dependent. Later, the uncertainty relation was recast in an
entropic form where the uncertainty is measured by the Shannon entropy [3]. A form of the entropic uncertainty
relation (EUR) introduced by Deutsch [4], was subsequently improved in the version conjectured in Ref.[5] and then
proved in Ref.[6]. (See, Ref.[7] for a review of the development of EURs).

In the derivation of the above mentioned uncertainty relations, the correlation of the observed system with another
system called quantum memory is not considered. Berta et al., in the Ref. [8], discussed the possibility of reduction of
the lower bound of EUR in the scenario when one considers the correlation of the observed system with the quantum
memory. For example, when the observed system is maximally entangled with the quantum memory, the lower bound
of EUR becomes zero for the measurement of two non-commuting observables. This phenomena has been brought
out in two recent experiments using respectively, pure [10] and mixed states [11]. It has been shown in Ref. [12], that
the lower bound of EUR in the presence of quantum memory may be optimized in an experimental scenario using the
fine-grained uncertainty relation (FUR) [13]. Recently, Coles and Piani [9] have developed the analysis in order to
make the bound tighter.

In the Ref. [8], the authors showed that entanglement is the resource to reduce the uncertainty. In a subsequent
work, Pati et al. [14] have claimed that quantum discord [15, 16] acts as a resource when the shared state between
quantum memory and observed system is chosen from a class of states including Werner states and isotropic states.
However, the above resources fail to reduce uncertainty optimally [12], in general. The motivation of the present
work is to find out the physical resources responsible for the optimal reduction of entropic uncertainty, which is given
operationally by using the fine-grained uncertainty relation [13]. In other words, we investigate the question as to
which physical quantity is responsible for reduction of the uncertainty optimally in an experimental situation involving
the measurement of two incompatible observables in the presence of shared states (correlations) between two parties.

In the present work we introduce the measure extractable classical information which as we show, contributes exactly
to reducing the uncertainty by an amount leading to the optimal lower bound for several examples of entangled,
separable as well as classical states. Here, we derive a new uncertainty relation in terms of the extractable classical
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information. We show that the lower bound of the uncertainty relation derived here is equal to the optimal lower
bound obtained with the help of the fine-grained uncertainty relation for various pure and mixed states. It further
follows from our relation that even in the absence of quantum correlations between the two parties, the uncertainty
may be reduced with the help of classical correlations.

II. DEFINITIONS AND MATHEMATICAL PRELIMINARIES

The entroipc form of uncertainty relation, when the correlation of the observed system with quantum memory is
not considered, is given by [5, 6]

H(R) +H(S) ≥ log2

1

c
, (1)

where H(k) = −
∑
i p
k
i log2 p

k
i is the Shannon entropy with pki being the probabiality of the i-th outcome for the

measurement of observable k ∈ {R,S}). The complementarity of the observables R and S is measured by the
quantity c (= maxi,j |〈ri|sj〉|2, with |ri〉 and |sj〉 are the eigenvectors of R and S, respectively).

To discuss the EUR in the presence of quantum memory, one may consider the following game as discussed in the
Ref. [8]. Bob prepares two system A and B in a bipartite quantum state ρAB and sends the system A to Alice. Now,
Alice is going to measure either observable R or S on her system A. From the knowledge of the system B, Bob’s
task is to miniize his uncertainty about Alice’s measurement outcome. Bob is able to reduce his uncertainty about
Alice’s measurement outcome with the help of communication from Alice regarding the choice of her measurement
performed, but not its outcome. The modified form of EUR in the presence of quantum memory is given by [9]

S(RA|B) + S(SA|B) ≥ c′(ρA) + S(A|B) (2)

where S(A|B) (= S(ρAB)−S(ρB), where ρB = TrA[ρAB ]) is called the conditional von-neumann entropy of the state
ρAB and c′(ρA) = max{c′(ρA, RA, SA), c′(ρA, SA, RA)}. c′(ρA, RA, SA) and c′(ρA, SA, RA) are defined by

c′(ρA, RA, SA) =
∑
i

pri log2

1

maxj cij

c′(ρA, SA, RA) =
∑
j

psj log2

1

maxi cij
, (3)

where pri = 〈r|ρA|r〉 with
∑
i p
r
i = 1, psj = 〈s|ρA|s〉 with

∑
j p

s
j = 1 and ci,j = |〈ri|sj〉|2, i.e., overlap between

eigenvector of the observables R and S. Here, the uncertainty for the measurement of the observable RA (SA)
on Alice’s system by accessing the information stored in the quantum memory with Bob is measured by S(RA|B)
(S(SA|B)) which is the conditional von Neumann entropy of the state given by

ρRA(SA)B =
∑
j

(|ψj〉RA(SA)〈ψj | ⊗ I)ρAB(|ψj〉RA(SA)〈ψj | ⊗ I)

=
∑
j

p
RA(SA)
j Π

RA(SA)
j ⊗ ρRA(SA)

B|j , (4)

where Π
RA(SA)
j ’s are the orthogonal projectors on the eigenstate |ψj〉RA(SA) of observable RA(SA), p

RA(SA)
j =

Tr[(|ψj〉RA(SA)〈ψj |⊗ I)ρAB(|ψj〉RA(SA)〈ψj |⊗ I)], ρ
RA(SA)
B|j = TrA[(|ψj〉RA(SA)〈ψj |⊗ I)ρAB(|ψj〉R(S)〈ψj |⊗ I)]/p

RA(SA)
j

and ρAB is the state of joint system ‘A’ and ‘B’. EUR in presence of quantum memory is modified by the quantity
S(A|B) which measures the amount of one-way distillable entanglement [17]. For shared maximal entanglement (i.e.,
S(A|B) = −1) between the system and the memory, there is no uncertainty in the measurement of incompatible
observables. EUR in the presence of quantum memory has been brought out in two recent experiments using respec-
tively, pure [10] and mixed states [11]. For experimental purposes [11], one can obtain the uncertanty relation form
the inequality (2) with the help of the relation [11]

H(pRd ) +H(pSd ) ≥ S(RA|B) + S(SA|B), (5)

and it is given by

H(pRd ) +H(pSd ) ≥ c′(ρA) + S(A|B), (6)
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where pRd (pSd ) is the probability of getting different outcomes when Alice and Bob measure the same observables R
(S) on their respective system. Here the lower bound of the sum of uncertainties for the shared state ρAB is given by

L1(ρAB) = c′(ρA) + S(A|B) (7)

Later, Pati et al. [14] have derived a tighter lower bound of the uncertainty relation using the state ρRA(SA)B . One
can improve the above lower bound using inequality (2) and it is given by Eq.(4) to be

S(RA|B) + S(SA|B) ≥ c′(ρA) + S(A|B) + max{0, DA(ρAB)− CMA (ρAB)}, (8)

where the quantum discord DA(ρAB) is given by [15, 16]

DA(ρAB) = I(ρAB)− CMA (ρAB), (9)

with I(ρAB) (= S(ρA) + S(ρB) − S(ρAB)) being the mutual information of the state ρAB which contains the total
correlation present in the state ρAB shared between the system A and the system B, and the classical information
CMA (ρAB) for the shared state ρAB (when Alice measures on her system) is given by

CMA (ρAB) = max
ΠRA

[S(ρB)−
∑
j

pRA
j S(ρRA

B|j)] (10)

In this case, the lower bound of the sum of Bob’s uncertainty about Alice’s measurement outcome for the measurement
of observable R and S is given by

L2(ρAB) = c′(ρA) + S(A|B) + max{0, DA(ρAB)− CMA (ρAB)}, (11)

which becomes a tighter lower bound compared to L1 given by Eq.(7) for those state whose quantum discord is larger
than the classical information, which is true for example, for a class of states including Werner states and isotropic
states.

A new form of the uncertainty relation, viz., fine grained uncertainty relation, was proposed by Oppenheim and
Wehner [13], motivated by the realization that entropic functions provide a rather coarse way of measuring the
uncertainty of a set of measurements, as they do not distinguish the uncertainty inherent in obtaining any combination
of outcomes for different measurements. In particular, they considered a game according to which Alice and Bob both
receive binary questions, i.e., projective spin measurements along two different directions at each side. The winning
probability is given by the relation [13]

P game(TA, TB , ρAB) =
∑
tA,tB

p(tA, tB)
∑
a,b

V (a, b|tA, tB)〈(AatA ⊗B
b
tB )〉ρAB

≤ P gamemax (12)

where ρAB is a bipartite state shared by Alice and Bob, and TA and TB represent the set of measurement settings {tA}
and {tB} chosen by Alice and Bob, respectively, with probability p(tA, tB). Alice’s (Bob’s) question and answer are

tA(tB) and a(b), respectively, with AatA =
[I+(−1)aAtA

]

2 (BbtB =
[I+(−1)bBtB

]

2 ) being a measurement of the observable
AtA (BtB ). Here V (a, b|tA, tB) is some function determining the winning condition of the game, which corresponding
to a special class of nonlocal retrieval games (CHSH game [13]) for which there exist only one winning answer for one
of the two parties, is given by V (a, b|tA, tB) = 1, iff a⊕ b = tA.tB , and 0 otherwise. P gamemax is the maximum winning
probability of the game, maximized over the set of projective spin measurement settings {tA} (∈ TA) by Alice, the
set of projective spin measurement settings {tB} (∈ TB) by Bob, i.e., P gamemax = maxTA,TB ,ρAB

P game(TA, TB , ρAB).
Using the maximum winning probability it is possible to discriminate between classical theory, quantum theory and
no-signaling theory with the help of the degree of nonlocality [13]. A generalization to the case of tripartite systems
has also been proposed [18].

In a recent work [12], we have shown that the lower bound of the uncertainty relation given by Eqs. (2) and (8) are
not optimal (for the choices of their observables that maximally reduce Bob’s uncertainty about Alice’s measurement
outcome), as illustrated by the analysis of an experiment using mixed states [11]. We have obtained the optimal lower
bound of entropic uncertainty using fine-grained uncertainty relation [13]. Considering a situation [11] where Alice
and Bob both measure the same observable on their system, we have derived a new uncertainty relation that captures
the optimal lower bound for Bob’s uncertainty about Alice’s measurement outcomes. Our uncertainty relation is given
by [12]

H(pRd ) +H(pSd ) ≥ H(pσz

d ) +H(pSinf), (13)
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where the lower bound given by

L3(ρAB) = H(pσz

d ) +H(pSinf) (14)

is optimal if it is tight since for each pair of observables R,S there is a state for which we get the equality. L3(ρAB)
is obtained with the help of the fine-grained uncertainty relation [13] which gives the infimum winning probability
pσz

d (pSinf) (corresponding to the minimum uncertainty) for the measurement of observable σz (σS = ~nS .~σ 6= σz with
~nS ≡ {sin(θS) cos(φS), sin(θS) sin(φS), cos(θS)} being a unit vector and ~σ = {σx, σy, σz} are the Pauli matrices)
corresponding to the game ruled by the winning condition given by [12]

V (a, b) = 1 iff a⊕ b = 1,

= 0 otherwise, (15)

where ‘a’ and ‘b’ are the binary outcomes (i.e., {a, b} ∈ {0, 1}) for Alice and Bob, respectively. V (a, b) describes
the experimental situation used in the Ref.[11], i.e., Alice and Bob measure the same observables and calculate the
probability of getting different outcomes. In measurements and communication involving two parties, the lower bound
of entropic uncertainty cannot fall below the bound (14). Using the same approach of Ref. [12], a fine-grained steering
inequality has been derived [19] which provides the most optimal steering condition for two qubit systems.

III. UNCERTAINTY RELATION USING EXTRACTABLE CLASSICAL INFORMATION

To derive the sum of uncertainties for the measurement of two incompatible observables R and S, we consider the
following memory game [8]. In this game Bob prepares a particle (labeled by ‘A’) in a particular state, say, ρA and
sends it to Alice who measures an observable chosen from the non-commuting set {RA, SA} and communicates only
the choice of the observable to Bob. Bob’s task is to reduce his uncertainty about the Alice’s measurement outcome.
To win the game, Bob chooses one of the following two strategies – (i) classical strategy; (ii) quantum strategy.

Classical strategy : Here, Bob prepares two particles (say, 1st particle labeled by A and 2nd particles labeled by
B) in the identical state, ρ = ρA = ρB . The combined state of two particles is given by

ρAB = ρA ⊗ ρB . (16)

After preparation, Bob sends the 1st particle to Alice. When Alice communicates about her choice of measurement
from the set of observables {RA, SA}, Bob measures the same observable on the 2nd particle possessed by himself.
He infers about the Alice’s measurement outcome from his own measurement outcome. Note here that Bob keeps
full information of the state of Alice since he himself has prepared it. Here, the uncertainty relation prevents Bob to
know with arbitrary precision the measurement outcomes of two non-commuting observables. The EUR which gives
the lower bound for the measurement of the above two non-commuting observables follows from Eq.(2) for product
states and is given by [9, 20]

H(RB) +H(SB) ≥ c′(ρB) + S(ρB), (17)

where the subscript B labels Bob’s measurement. The inequality (17) is tighter than the entropic uncertainty relation
given by inequality (2), and hence, Bob can not reduce his uncertainty about Alice’s measurement outcome below the
lower bound L0(ρAB) given by

L0(ρAB) = c′(ρB) + S(ρB). (18)

Note that, the state given by Eq.(16) has zero classical correlation (i.e., CMA = 0) and zero quantum correlation (i.e.,
DA = 0) [21]. The inequality (17) represents the entropic uncertainty relation for Bob’s measurements of two non-
commuting observables RB and SB on his system, and pertains to the situation when there is either no correlation
with the other system called quantum memory, or the correlation with the quantum memory is not considered.

Quantum strategy : In this strategy, Bob prepares two particles in a correlated state, ρAB , and sends the 1st
particle to Alice and keeps the 2nd particle. To reduce his uncertainty further from the bound c′(ρB) +S(ρB) (which
is the lower bound of uncertainty corresponding to the classical strategy), Bob uses the correlations (quantum and/or
classical) present in the state ρAB . After getting information about the choice of measurement, Bob measures the
same observable as Alice’s choice. Since, Alice and Bob measure independently on their respective systems, the order
of measurement, i.e., who measures first, does not affect in the considered game. Here consider Alice communicates
about her choice of observable from the set {R,S} to Bob. First Bob measures the observable and then Alice
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measures. After the measurement performed by Bob with the observable that communicated by Alice, the combined
state ρARB(SB) is given by

ρARB(SB) =
∑
j

p
RB(SB)
j ρ

RB(SB)
A|j ⊗Π

RB(SB)
j , (19)

where Π
RB(SB)
j = |ψ〉RB(SB)〈ψ|, ρ

RB(SB)
A|j (= TrB [(I ⊗ Π

RB(SB)
j )ρAB ]) is the Alice’s conditional state when Bob gets

j-th outcome and p
RB(SB)
j (= Tr[(I ⊗ |ψ〉RB(SB)〈ψ|)ρAB ]) is the probability of getting j-th outcome by Bob.

The classical information CMB (ρAB), given by

CMB (ρAB) = max
ΠRB

[S(ρA)−
∑
j

pRB
j S(ρRB

A|j)], (20)

where ρA = TrB [ρAB ], gives the maximum information that Bob can extract on average about the Alice’s system
by measuring on his system when they share the state ρAB . Now, one may ask the following questions – what
information can Bob extract about Alice’s measurement outcomes? CMB (ρAB) contains the information about the
Alice’s measurement outcomes when she measures along a particular direction which maximizes the quantity CB(ρAB)
(where CB(ρAB) is taken with out maximization in Eq.(20)). When Bob gets the j-th outcome for the measurement
of the observable RB on his system, his knowledge about Alice’s measurement outcomes for the measurement in
the eigenbasis of ρRB

A|j is given by the quantity S(ρRB

A|j). Since S(ρA) is Bob’s uncertainty about Alice’s outcome in

the absence of correlations, from the Eq.(20), it can be easily seen that CMB (ρAB) measures the amount of Bob’s
uncertainty about Alice’s measurement outcome reduced due to Bob’s measurement. For example, for the shared
Werner state ρWAB [22] between Alice and Bob given by

ρWAB =
1− p

4
I ⊗ I + p|ψ−〉〈ψ−|, (21)

where I is the (2⊗2) unitary matrix, |ψ−〉 is the singlet state (|01〉AB−|10〉AB)/
√

2, and p, the mixedness parameter

(lying between 0 and 1), Bob gets the maximum information about Alice’s measurement outcomes given by S(ρRB

A|j)

when they measure the same observables on their respective system. Hence, classical information quantifies Bob’s
maximum knowledge about Alice’s measurement outcome in a specific direction, say in the eigen basis of ρRB

A|j .

According to our considered game, when Alice communicates her choice, say, RA (where ‘A’ labels Alice’s choice),
Bob measures same the observable RB = RA on his particle (labeled by ‘B’). Due to Bob’s measurement, the reduced
uncertainty measured by the conditional von-Neumann entropy of the state, ρARB

given by Eq.(19) now becomes

S(A|RB) = S(ρA)− CRB (ρAB), (22)

where CRB (ρAB) = S(ρA)−
∑
i p
RB
i S(ρRB

A|i ) as obtained from the Eq.(20) without taking the maximization. This is the

information obtained by Bob when he makes a measurement of the observable RB on his system. CRB (ρAB) gives the in-

formation about Alice’s measurement outcomes when she measures in the eigenbasis of ρRB

A|i on her particle. Bob’s max-

imum information about Alice’s measurement outcome in the eigenbasis ρRB

A|i is given by CMB (ρAB) = maxRB
CRB (ρAB)

which is known as the classical information where the maximization is taken over all possible observables RB . After
Bob’s measurement, Alice measures the observable RA on her particle and the combined state (19) becomes

ρRA,RB (SA,SB) =
∑
i

p
RB(SB)
i

(∑
k

q
RA(SA)
k|i Π

RA(SA)
k

)
⊗Π

RB(SB)
i , (23)

where Π
RA (SA)
k is projector corresponding to the eigenstate of observable RA (SA) and q

RA (SA)
k|i =

Tr[Π
RA (SA)
k ρ

RB (SB)
A|i ] is the conditional probability distribution for the measurement of observable RA (SA) on

Alice’s particle, given that Bob gets ith outcome for the measurement of the same observable RB (SB) on his particle.
Now, Alice’s reduced uncertainty for the measurement of observable RA, i.e., more specificaly, conditional entropy of
the state ρRA,RB

is given by

H(RA|RB) = H(RA)− CR,RA,B (ρAB), (24)

with

CR,RA,B (ρAB) = H(RA)−
∑
i

pRB
i H(qRA

i ), (25)
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where H(RA) is the Shannon entropy of the probability distribution {qRB

k } corresponding to different measurement

outcomes {k} for the measurement of observable RA on Alice’s particle and H(qRA
i ) is the Shannon entropy of

the conditional probability distribution {qRA

k|i }. We define the quantity CR,RA,B (ρAB) as the “extractable classical

information”.
Similarly, when both Alice and Bob measures the observable S, the conditional entropy of the state ρSA,SB

(given
by Eq. (23)) becomes

H(SA|SB) = H(SA)− CS,SA,B(ρAB), (26)

where CS,SA,B(ρAB) is the extractable classical information for the measurement of the observable S on the both particles.

Now, combining Eqs. (24) and (26), one gets

H(RS |RB) +H(SA|SB) = H(RA) +H(SA)− CR,RA,B (ρAB)− CS,SA,B(ρAB) (27)

The sum of the first two terms on the r.h.s. of the above equation (27) represents the entropy of a single system
(system A) when there is either no correlation with the other system called quantum memory, or the correlation with
the quantum memory is not considered. Hence, the sum H(RA) +H(SA) can be contrained through the inequality
(17), using which we obtain

H(RA|RB) +H(SA|SB) ≥ c′(ρA) + S(ρA)− CR,RA,B (ρAB)− CS,SA,B(ρAB), (28)

where ρA is the density state of Alice’s particle. Now, using the inequality (5), Eq.(28) becomes

H(pRd ) +H(pSd ) ≥ c′(ρA) + S(ρA)− CR,RA,B (ρAB)− CS,SA,B(ρAB), (29)

where H(pαd ) is the Shannon entropy of the probability distribution {pαd } when Alice and Bob measure same observ-
able α ∈ {R,S} and get different outcomes. Eq.(29) represents our new uncertainty relation when both Alice and
Bob measure two incompatible observables R and S. Hence, the lower bound of Bob’s uncertainty about Alice’s
measurement outcomes is given by

L4(ρAB) = c′(ρA) + S(ρA)− CR,RA,B (ρAB)− CS,SA,B(ρAB). (30)

IV. EXAMPLES

In the following analysis we compare the bound L4(ρAB) with the lower bounds through the quantum strategy
obtained earlier in the literature, viz., L1(ρAB) (given by Eq.(7)) [8, 11], the bound L2(ρAB) (given by Eq.(11) [14],
the bound L3(ρAB) (given by Eq.(14)) [12], as well as the bound L0(ρAB) (given by Eq.(18) with S(ρB) = S(TrAρAB))
obtained with the help of the classical strategy for various classes of pure and mixed entangled and separable states.
We show that the lower bound given by Eq.(30) is optimal as obtained through fine-graining [12] for all the cases
considered here.

Pure entangled state : Here we consider a pure entangled state ρPEAB , given by

ρPEAB =
√
α|01〉AB −

√
1− α|10〉AB , (31)

where α lies between 0 and 1, and the state ρPEAB is maximally entangled for α = 1
2 . The classical information (when

Alice measures her particle) is given by

CMB (ρPEAB) = H(α), (32)

where H(α) = α log2 α − (1 − α) log2(1 − α). CMB (ρPEAB) gives the information about Alice’s measurement outcome

in the direction {µ cos[φS ] sin[θS ], µ sin[φS ] sin[θS ], 1−2α+cos[θS ]
1+cos[θS ]−2α cos[θS ]} (where µ =

2
√
α(1−α)

1+cos[θS ]−2α cos[θS ] ) to Bob when

he measures along {sin(θS) cos(φS), sin(θS) sin(φS), cos(θS)}. Let us consider that before playing the game Alice
and Bob discuss about their strategy, such as, choices of the state and measurement settings. Alice chooses those
settings for which Bob’s uncertainty about her measurement outcome will be minimum as well as maximize the lower
bound of uncertainty in the classical strategy (given by Eq.(18)), i.e., c′(ρB) = 1 where maxi cij = maxj cij = 1/2.
With the help of the fine-grained uncertainty relation [12, 13], one can obtain the winning probability (corresponding
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to minimum uncertainty) when Alice and Bob both measure the same observable and get different outcomes, i.e.,
a⊕ b = 1 [12]. The winning probability is given by

P game(ρPEAB) =
1

4
(3 + 2

√
α(1− α) + (1− 2

√
α(1− α)) cos[2θS ]) (33)

Bob’s uncertainty about Alice’s outcome would be minimum for the choice of observables given by

R = σz (i.e., θS = 0),

S = σx (i.e., θS =
π

2
), (34)

which leads to pRd = 1, and the infimum probability pSinf = 1/2+
√
α(1− α). Hence, the optimal lower bound obtained

from the Eq.(14) is given by [12]

L3(ρPEAB) = H(
1

2
−
√
α(1− α)). (35)

When Bob chooses the classical strategy, he first prepares two copies of the state TrB(ρPEAB) and send one to Alice.
For the above choice of observables, Bob’s uncertainty about Alice’s measurement outcome is maximally reduced
(c′(ρB) = 1 by choosing the above measurement settings), and is given by the inequality (17). The lower bound (18)
is given by

L0(ρPEAB) = 1 +H(α). (36)

In the quantum strategy using the uncertainty relations proposed in Refs. [8] and [14], Bob’s uncertainty is lower
bounded by ((7) and (11)), respectively, which turn out to be equal, given by

L1(ρPEAB) = L2(ρPEAB) = 1−H(α). (37)

However, in practice Bob is unable to reduce his uncertainty upto the above level, since L1(ρPEAB) is not the optimal
lower bound. The main reason is that Bob only extracts the information Cσz,σz

A,B (ρPEAB) (Cσx,σx

A,B (ρPEAB)) given by H(α)

(1−H( 1
2 −

√
α(1− α))) when both of them measure the same spin observables R = σz (S = σx) on their respective

particle. Hence, the lower bound (given by Eq.(30)) of Bob’s uncertainty is given by

L4(ρPEAB) = H(
1

2
−
√
α(1− α)). (38)

From the Eqs.(35) and (38), it is clear that the quantities Cσz,σz

A,B (ρPEAB) and Cσx,σx

A,B (ρPEAB) are responsible for reducing
Bob’s uncertainty about Alice’s measurement outcome optimally. This explains in terms of physical resources why
the lower bound L1(ρPEAB) (≤ L3(ρPEAB)) is not experimentally reachable, whereas the lower bound L3(ρPEAB) given by
fine-graining is indeed attainable.

Werner State : For the class of Werner State ρWAB , given by Eq.(21), the classical information is given by

CMB (ρWAB) = 1−H(
1− p

2
). (39)

CMB (ρWAB) gives Bob the information about the measurement outcome of Alice when they measure same observables.
The quantum discord of the state ρWAB is given by

DB(ρWAB) = I(ρW )− CMB , (40)

where I(ρWAB) = 2 + 3 1−p
4 log2

1−p
4 + 1+3p

4 log2
1+3p

4 is the mutual information of ρWAB .
In the Classical strategy, for the choice observables given by Eq.(34) (which minimize Bob’s uncertainty optimally

[12]), Bob’s uncertainty is lower bounded by (18)

L0(ρWAB) = 2, (41)

where ρWA = TrB [ρWAB ] = I
2 . When Bob uses the quantum strategy [8, 11], his uncertainty (given by Eq.(6)) is bounded

by

L1(ρWAB) = 2− I(ρWAB), (42)
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FIG. 1: A comparison of the different lower bounds for the (i) Werner state with p = 0.723, (ii) the state with maximally mixed marginals
with the ci’s given by cx = 0.5, cy = −0.2, and cz = −0.3, and (iii) the Bell diagonal state with p = 0.5.

where for the state ρWAB , S(A|B) = 1−I(ρWAB).The improved lower bound (11) given by Pati et al.[14] for the Werner
calss of states turns out to be

L2(ρWAB) = 2− 2CMB (ρWAB) = 2H(
1− p

2
). (43)

Note that Bob is able to gain his knowledge about Alice’s measurement outcomes by an amount CMB (ρWAB) when both
Alice and Bob measure the same observables R = σz (S = σx) on their respective particles. Hence, Bob’s uncertainty
(given by Eq.(29)) is lower bounded by

L3(ρWAB) = 2− 2CMB (ρWAB) = 2H(
1− p

2
). (44)

Now, using fine-graining the optimal lower bound for Bob’s uncertainty is given by [12]

L4(ρWAB) = 2H(
1− p

2
), (45)

Thus, for the Werner class of states, Bob can actually minimize his uncertainty about Alice’s measurement outcome
upto 2H( 1−p

2 ) (given by Eqs.(43), (44) and (45)). The lower bound L1(ρWAB) (≤ L3(ρWAB)) is not experimentally
reachable.

Bell diagonal state : The Bell diagonal state, used in Ref.[11] is given by

ρBDAB = pρ2 + (1− p)ρS , (46)

where ρ2 is the density matrix of the state |00〉+|11〉√
2

. The classical information of the state ρBDAB is given by

CMB (ρBDAB ) = 1. (47)

Here CMB (ρBDAB ) gives Bob the information about Alice’s measurement outcome for the measurement
along {sin(θS) cos(φS),− sin(θS) sin(φS), cos(θS)} from his measurement outcome along the direction
{sin(θS) cos(φS), sin(θS) sin(φS), cos(θS)}. The quantum discord of ρBDAB is given by

DB(ρBDAB ) = 1−H(p), (48)

where I(ρBDAB ) (= 2−H(p)) is the mutual information of the state ρBDAB . From the Eqs.(47) and (48), it is clear that
for the state ρBDAB , CMB (ρBDAB ) ≥ DB(ρBDAB ).
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In the classical strategy for the choice of above observables, Bob’s uncertainty is bounded by

L0(ρBDAB ) = 2. (49)

In the quantum strategy, theoretically Bob’s uncertainty (obtained using Eq.(2) and (8)) is lower bounded by

L1(ρBDAB ) = L2(ρBDAB ) = H(p), (50)

where S(A|B) = H(p) − 1. With the measurement on his system of an observable communicated by Alice, Bob
extracts the classical information by an amount Cσz,σz

A,B (ρBDAB ) = 1−H(p) (C
σy,σy

A,B (ρBDAB ) = 1) for the spin measurement

along z− direction (y− direction). Hence, Bob’s uncertainty is lower bounded by

L4(ρBDAB ) = H(p). (51)

In this case the optimal lower bound for Bob’s uncertainty about Alice’s measurement outcome given by fine-graining
[12] also turns out to be

L3(ρBDAB ) = H(p). (52)

Here the lower bound predicted by [8, 14] is optimal. Eqs.(51) and (52) show that the extactable classical information
Cσz,σz

A,B (ρBDAB ) = 1−H(p), C
σy,σy

A,B (ρBDAB ) = 1 is responsible for reducing Bob’s uncertainty optimally.

Maximally mixed marginal state : The maximally mixed marginal state ρMM
AB is given by

ρMM
AB =

1

4
(I +

∑
i=x,y,z

ciσi ⊗ σi). (53)

where the coefficients ci’s (i ∈ {x, y, z}) are constrained by the eigenvalues λi ∈ [0, 1] of ρMM
AB given by

λ0 =
1− cx − cy − cz

4
, λ1 =

1− cx + cy + cz
4

, λ2 =
1 + cx − cy + cz

4
, λ3 =

1 + cx + cy − cz
4

. (54)

The mutual information of the state ρMM
AB is given by

I(ρMM
AB ) = 2 +

3∑
j=0

λj log 2[λj ]. (55)

The classical information of the state is given by [23]

CMB (ρMM
AB ) =

1− cM
2

log 2[1− cM ] +
1 + cM

2
log 2[1 + cM ], (56)

where cM = max[|cx|, |cy|, |cz|], and the quantum discord of the state ρMM
AB is given by

DB(ρMM
AB ) = I(ρMM

AB )− CMB (ρMM
AB ). (57)

As usual, before playing the game, Alice and Bob discuss the measurement settings (i.e., strategy for the game) for
the shared state ρMM

AB . To optimize the uncertainty, Bob takes the help of the fine-grained uncertainty relation (FUR)
[12]. Here, the winning probability when Alice and Bob both measure the observable S is given by

P game
S =

1

2
(1− cx sin2[θS ] cos2[φS ]− cy sin2[θS ] sin2[φS ]− cz cos2[θS ]). (58)

The measurement settings may be chosen such that the quantity P game
S is maximized. For the measurement setting

σz (i.e., θS = 0), P game
σz

will be maximum when cz − cx < 0. Here we consider cx = 0.5, cy = −0.2, and cz = −0.3,
and for this choices, the observable R = σz and S = σx minimizes Bob’s uncertainty [12]. For the above choice the
optimal lower bound of Bob’s uncertainty is lower bounded by[12]

L3(ρMM
AB ) ≈ 1.745. (59)

When Bob chooses the classical strategy, for the above choice of observable his uncertainty given by (17) is lower
bounded by

L0(ρMM
AB ) = 2. (60)
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Employing the quantum strategy, Bob’s uncertainty (6) is lower bounded by

L1(ρMM
AB ) ≈ 1.5589, (61)

whereas, the bound [14] is given by

L2(ρMM
AB ) ≈ 1.6226, (62)

where the classical information CMB (ρMM
AB ) = 0.1887 (obtained from Eq.(56) using our choice of ci’s) and the quantum

discord DB(ρMM
AB ) = 0.2524 (obtained from Eq.(57)), tightens Berta’s lower bound given by Eq.(61)[8].

When both Alice and Bob measure same observable, σz (σx) on their respective system, Bob extracts the information
given by Cσz,σz

A,B (ρMM
AB ) = 0.0659 (Cσx,σx

A,B (ρMM
AB ) = 0.1887) for the above choice of ci’s. Now, using Eq.(29) Bob’s

uncertainty is lower bounded by

L4(ρMM
AB ) ≈ 1.745, (63)

which is equal to the optimal lower bound obtained using fine-grained uncertainty relation [12]. One sees that though
in this case, L2(ρMM

AB ) tightens the bound L1(ρMM
AB ), it is not possible for either of them to be realized in practice

since they are not optimal. Fig.1 depicts the main result of the paper, viz., the optimal lower bound obtained through
the quantum strategy where the concept of extractable classical information is applied. For the three classes of the
states depicted, one sees that the result

L1 ≤ L2 ≤ (L3 = L4) (64)

holds.

FIG. 2: A comparison of the different lower bounds for the shared classical state chosing p=0.5.

Classical state : Now, we consider classical state ρCAB , given by

ρCAB = p|00〉〈00|+ (1− p)|11〉〈11|. (65)

The state, ρCAB is a zero discord state [21], i.e.,

DB(ρCAB) = 0. (66)

The classical information of the state ρCAB is given by

CMB (ρCAB) = H(p). (67)
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CMB (ρCAB) gives the information about Alice’s measurement outcome for the measurement of observable σz to Bob,
when Bob measures the same observable σz. The winning probability of the game characterized by winning condition
a⊕ b = 1 [12] is

P game(ρCAB) =
sin2[θS ]

2
. (68)

Hence, the choices (for Alice) of the set of observables {R,S} (which minimize Bob’s uncertainty about Alice’s
outcome) are given by Eq.(34).

In this case, when Bob chooses the classical strategy, his uncertainty (given in Eq.(2)) for the choices of settings
given by Eq.(34) is lower bounded by an amount

L0(ρCAB) = 1 +H(p). (69)

When Bob applies the quantum strategy [8, 11, 14] his uncertainty is lower bounded by

L1(ρCAB) = L2(ρCAB) = 1. (70)

For the state ρCAB , Bob’s extractable classical information (given by Eq.25) is Cσz,σz

A,B (ρMM
AB ) = H(p) (Cσx,σx

A,B (ρMM
AB ) = 0)

when both of them measure the same observable R = σz (S = σx) on their respective particles. Hence, the lower
bound given by Eq.(30) becomes

L4ρ
C
AB = 1. (71)

Finally, the optimal lower bound given by Eq.(14) is also

L3ρ
C
AB = 1. (72)

Hence in this case, L1 = L2 = L3 = L4 = 1 < L0. We thus observe that even purely classical correlations can play a
role in reducing the uncertainty using a shared bipartite state when the quantum strategy is employed. This result is
displayed in Fig.2.

V. CONCLUSIONS

To summarize, in the present work we derive a new form of the uncertainty relation which enables to reduce Bob’s
uncertainty maximally about Alice’s measurement outcome while they choose same observable with the help of a
shared state and communication between the two. Using examples of several classes of pure and mixed states of
two qubits possessing quantum and classical correlations, we show that the lower bound of the uncertainty relation
derived here is equal to the optimal lower bound (in the sense that Bob’s uncertainty is reduced maximally) obtained
with the help of the fine-grained uncertainty relation [12, 13]. We identify as the extractable classical information
the physical quantity that is responsible for maximally reducing the uncertainty for the measurement of two non-
commuting observables. Thus, the uncertainty relation presented here provides an explanation in terms of physical
resources as to how the uncertainty of measurement of two incompatible observables may be reduced maximally using
shared correlations and classical communication. Our analysis further explains how the uncertainty may be reduced
using the quantum strategy even in the absence of quantum correlations when the two parties share just a classically
correlated state.

Before concluding, it will be worthwhile to stress that in the present work we have reformulated the uncertainty
relation in the presence of quantum memory. The lower bound of uncertainty is derived here using an approach
that is different from the fine-graining employed earlier in the context of memory [12] and steering [19]. Though it
turns out that for several important and widely considered examples of two-qubit states the bound derived here and
that using fine-graining turn out to be numerically equivalent, there is as yet no proof of formal equivalence between
the two derived bounds using two a priori different concepts of classical information and fine-graining, respectively.
Further investigation into this issue is called for in order to clarify whether the connection between fine-graining and
extractable classical information (the validity of the last equality of our relation (64)) would hold true for other classes
of two-qubit states, or could even be extended to the case of higher dimensional systems. Finally, it will be interesting
to extend our present analysis in the light of other recent improvements in the entropic uncertainty relations [24].
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