Skip to main content

Advertisement

Log in

Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A theoretical scheme is proposed to implement bidirectional quantum controlled teleportation (BQCT) by using a nine-qubit entangled state as a quantum channel, where Alice may transmit an arbitrary two-qubit state called qubits \(A_1\) and \(A_2\) to Bob; and at the same time, Bob may also transmit an arbitrary two-qubit state called qubits \(B_1\) and \(B_2\) to Alice via the control of the supervisor Charlie. Based on our channel, we explicitly show how the bidirectional quantum controlled teleportation protocol works. And we show this bidirectional quantum controlled teleportation scheme may be determinate and secure. Taking the amplitude-damping noise and the phase-damping noise as typical noisy channels, we analytically derive the fidelities of the BQCT process and show that the fidelities in these two cases only depend on the amplitude parameter of the initial state and the decoherence noisy rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Zhang, Z.J.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352(1), 55–58 (2006)

    Article  ADS  MATH  Google Scholar 

  3. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377(19), 1337–1344 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Luo, M.-X., Yun, Deng, Chen, X.-B., Yang, Y.-X.: The faithful remote preparation of general quantum states. Quantum Inf. Process. 12(1), 279–294 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled Bidirectional Remote State Preparation in Noisy Environment: A Generalized View. arXiv:1409.0833 (2014)

  7. Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13(7), 1639–1650 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12(10), 3223–3237 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14(1), 373–379 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Zhang, Z.-H., Shu, L., Mo, Z.-W., Zheng, J., Ma, S.-Y., Luo, M.-X.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process. 13(9), 1979–2005 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Wang, S.F., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12(7), 2497–2507 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Ji, Q.B., Liu, Y.M., Yin, X.F., Liu, X.S., Zhang, Z.J.: Quantum operation sharing with symmetric and asymmetric W states. Quantum Inf. Process. 12(7), 2453–2464 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process. 14(2), 739–753 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  15. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52(10), 3790–3796 (2013)

    Article  MathSciNet  Google Scholar 

  16. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14(7), 2599–2616 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Thapliya, K., Verma, A., Pathak, A.: A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. (2015). doi:10.1007/s11128-015-1124-8

  18. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54(1), 269–272 (2015)

    Article  Google Scholar 

  19. Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52(11), 3870–3873 (2013)

    Article  MATH  Google Scholar 

  20. Duan, Y.-J., Zha, X.-W., Sun, X.-M., Xia, J.-F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53(8), 2697–2707 (2014)

    Article  MATH  Google Scholar 

  21. Fu, H.-Z., Tian, X.-L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theor. Phys. 53(6), 1840–1847 (2014)

    Article  MATH  Google Scholar 

  22. Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12(12), 3835–3844 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quantum Inf. Process. 13(1), 59–70 (2014)

    Article  ADS  Google Scholar 

  24. O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)

    Article  ADS  Google Scholar 

  25. Xian-Ting, L.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39, 537–542 (2003)

    Article  Google Scholar 

  26. Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69(6), 064302 (2004)

    Article  ADS  Google Scholar 

  27. Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)

    Article  ADS  Google Scholar 

  28. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  29. Cerè, A., Lucamarini, M., Giuseppe, G.D., Tombesi, P.: Experimental test of two-way quantum key distribution in the presence of controlled noise. Phys. Rev. Lett. 96(20), 200501 (2006)

    Article  ADS  Google Scholar 

  30. Watrous, J.: PSPACE has constant-round quantum interactive proof systems. Theor. Comput. Sci. 292(3), 575–588 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum state sharing. J. Phys. B 41, 145506 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of Jiangxi Province, China (Grant No. 20142BAB202005), the Research Foundation of state key laboratory of advanced optical communication systems and networks, Shanghai Jiao Tong University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-hua Li.

Appendix

Appendix

Alice’s and Bob’s possible measurement result, Charlie’s possible measurement result, and the corresponding locally unitary transformations performed by Alice and Bob on qubits 3, 5, 7 and 9, respectively.

Alice’s and Bob’s result

Charlie’s result

Unitary transformation

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _3 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _5 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _7 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _3 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _5 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _3 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _7 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _3 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _5 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _7 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _5 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _7 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _3 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _5 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _7 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 1|}\right) _3 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _5 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _5 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _7 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _5 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _3 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _7 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _3 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _7 \otimes \left( {|0 \rangle \langle 0|\pm |1 \rangle \langle 1|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|0 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\pm |1 \rangle \langle 0|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _7 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _5 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _5 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _7 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _3 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _3 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _7 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _3 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _5 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _9 \)

\(|{\Phi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _3 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _5 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _7 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _7 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _3 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Phi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _3 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _5 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _7 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _5 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Phi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _3 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _5 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _7 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Phi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _3 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _5 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _7 \otimes \left( {|0 \rangle \langle 1|\mp |1 \rangle \langle 0|}\right) _9 \)

\(|{\Psi ^{\pm }}\rangle _{A_1 2}|{\Psi ^{\pm }}\rangle _{A_2 4}|{\Psi ^{\pm }}\rangle _{B_1 6}|{\Psi ^{\pm }} \rangle _{B_2 8} \)

\(|1 \rangle _1 \)

\(\left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _3 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _5 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _7 \otimes \left( {-|0 \rangle \langle 0|\mp |1 \rangle \langle 1|}\right) _9 \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yh., Jin, Xm. Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf Process 15, 929–945 (2016). https://doi.org/10.1007/s11128-015-1194-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1194-7

Keywords

Navigation