Skip to main content
Log in

Enlarge the scale of W state by connecting multiple existed W states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a simple scheme to generate large-scale W state. With the cross-phase modulation, we design a photon number resolving discrimination. This discrimination, associated with some single-photon operations, is enough to connect the existed W states. No more two-photon or multi-photon operations are required. This scheme is powerful and flexible for connecting arbitrary number of W states. It is therefore suitable for creating large-scale W state with the current technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  5. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57, 1238–1243 (2014)

    Article  ADS  Google Scholar 

  6. Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Preparation ofmultipartite entangled states used for quantum information networks. Sci. China Phys. Mech. Astron. 57, 1210–1217 (2014)

    Article  ADS  Google Scholar 

  7. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57, 1696–1702 (2014)

    Article  ADS  Google Scholar 

  8. Zhang, C.M., Song, X.T., Treeviriyanupab, P., Li, M., Wang, C., Li, H.W., Yin, Z.Q., Chen, W., Han, Z.F.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59, 2825–2828 (2014)

    Article  Google Scholar 

  9. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  10. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999)

    Article  ADS  Google Scholar 

  11. D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states. Quantum Inf. Comput. 6, 173–183 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Joo, J., Lee, J., Jang, J., Park, Y.J.: Quantum secure communication via a W state. J. Korean Phys. Soc. 46, 763–768 (2005)

    Google Scholar 

  13. Ng, H.T., Kim, K.: Quantum estimation of magnetic-field gradient using W-state. Opt. Commun. 331, 353–358 (2014)

    Article  ADS  Google Scholar 

  14. Zou, X.B., Pahlke, K., Mathis, W.: Generation of an entangled four-photon W state. Phys. Rev. A 66, 044302 (2002)

    Article  ADS  Google Scholar 

  15. Yamamoto, T., Tamaki, K., Koashi, M., Imoto, N.: Polarization-entangled W state using parametric down-conversion. Phys. Rev. A 66, 064301 (2002)

    Article  ADS  Google Scholar 

  16. Li, Y., Kobayashi, T.: Four-photon W state using two-crystal geometry parametric down-conversion. Phys. Rev. A 70, 014301 (2004)

    Article  ADS  Google Scholar 

  17. Shi, B.S., Tomita, A.: Creation of a polarization W state using optical fibre multiports. J. Mod. Opt. 52, 755–761 (2005)

    Article  ADS  Google Scholar 

  18. Tashima, T., Özdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: An elementary optical gate for expanding an entanglement web. Phys. Rev. A 77, 030302 (2008)

    Article  ADS  Google Scholar 

  19. Tashima, T., Özdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Local expansion of photonic W state using a polarization-dependent beamsplitter. New J. Phys. 11, 023024 (2009)

    Article  ADS  Google Scholar 

  20. Ikuta, R., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: Optimal local expansion of W states using linear optics and Fock states. Phys. Rev. A 83, 012314 (2011)

    Article  ADS  Google Scholar 

  21. Gong, Y.X., Zou, X.B., Huang, Y.F., Guo, G.C.: Simple scheme for expanding a polarization-entangled W state adding one photon. J. Phys. B: At. Mol. Opt. Phys. 42, 035503 (2013)

    Article  ADS  Google Scholar 

  22. Özdemir, S.K., Matsunaga, E., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: An optical fusion gate for W-states. New J. Phys. 13, 103003 (2011)

    Article  Google Scholar 

  23. Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the W-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87, 032331 (2013)

    Article  ADS  Google Scholar 

  24. Ozaydin, F., Bugu, S., Yesilyurt, C., Altintas, A.A., Tame, M., Özdemir, S.K.: Fusing multiple W states simultaneously with a Fredkin gate. Phys. Rev. A 89, 042311 (2014)

    Article  ADS  Google Scholar 

  25. Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic W or Bell states. Quantum Inf. Process. 12, 2965–2975 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Lin, Q.: Efficient generation of multi-photon W state. Sci. Sin.-Phys. Mech. Astron. 42, 54–60 (2012). (in Chinese)

    Article  Google Scholar 

  27. Han, X., Hu, S., Guo, Q., Wang, H.F., Zhang, S.: Effective scheme for W-state fusion with weak cross-Kerr nonlinearities. Quantum Inf. Process. 14, 1919–1932 (2015)

    Article  ADS  Google Scholar 

  28. Hu, J.R., Lin, Q.: W state generation by adding independent single photons. Quantum Inf. Process. 14, 2847–2860 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Heilmann, R., Gräfe, M., Nolte, S., Szameit, A.: A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60, 96–100 (2015)

    Article  Google Scholar 

  30. Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141–141 (2015)

    Article  Google Scholar 

  31. Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2014)

    Article  ADS  Google Scholar 

  32. Mikami, H., Li, Y., Fukuoka, K., Fukuoka, K., Kobayashi, T.: New high-efficiency source of a three-photon w state and its full characterization using quantum state tomography. Phys. Rev. Lett. 95, 150404 (2005)

    Article  ADS  Google Scholar 

  33. Kiesel, N., Schmid, C., Tth, G., Solano, E., Weinfurter, H.: Experimental observation of four-photon entangled Dicke state with high fidelity. Phys. Rev. Lett. 98, 063604 (2007)

    Article  ADS  Google Scholar 

  34. Tashima, T., Wakatsuki, T., Özdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Local transformation of two EPR photon pairs into a three-photon W state. Phys. Rev. Lett. 102, 130502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. Tashima, T., Kitano, T., Özdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Demonstration of local expansion toward large-scale entangled webs. Phys. Rev. Lett. 105, 210503 (2010)

    Article  ADS  Google Scholar 

  36. Gräfe, M., Heilmann, R., Perez-Leijia, A., Keil, R., Dreisow, F., Heinrich, M., Moya-cessa, H., Nolte, S., Christodoulides, D.N., Szameit, A.: On-chip generation of high-order single-photon W-states. Nat. Photonics 8, 791–795 (2014)

    Article  ADS  Google Scholar 

  37. Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (R) (2005)

    Article  ADS  Google Scholar 

  38. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  39. Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)

    Article  ADS  Google Scholar 

  40. Spiller, T.P., Nemoto, K., Braunstein, S.L., Munro, W.J., van Loock, P., Milburn, G.J.: Quantum computation by communication. New J. Phys. 8, 30 (2006)

    Article  ADS  Google Scholar 

  41. Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79, 022301 (2009)

    Article  ADS  Google Scholar 

  42. Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80, 042310 (2009)

    Article  ADS  Google Scholar 

  43. Lin, Q., He, B., Bergou, J.A., Ren, Y.H.: Processing multiphoton states through operation on a single photon: methods and applications. Phys. Rev. A 80, 042311 (2009)

    Article  ADS  Google Scholar 

  44. Lin, Q., He, B.: Efficient generation of universal two-dimensional cluster states with hybrid systems. Phys. Rev. A 82, 022331 (2010)

    Article  ADS  Google Scholar 

  45. Lin, Q., He, B.: Weaving independently generated photons into an arbitrary graph state. Phys. Rev. A 84, 062312 (2011)

    Article  ADS  Google Scholar 

  46. Lin, Q., He, B.: Highly efficient processing of multi-photon states. Sci. Rep. 5, 12792 (2015)

    Article  ADS  Google Scholar 

  47. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  48. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  49. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  50. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  ADS  Google Scholar 

  51. Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)

    Article  ADS  Google Scholar 

  52. Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)

    Article  ADS  Google Scholar 

  53. Dong, L., Xiu, X.M., Gao, Y.J., Yi, X.X.: A nearly deterministic scheme for generating chi-type entangled states with weak cross-Kerr nonlinearities. Quantum Inf. Process. 12, 1787–1795 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Dong, L., Wang, J.X., Shen, H.Z., Li, D., Xiu, X.M., Gao, Y.J., Yi, X.X.: Deterministic transmission of an arbitrary single-photon polarization state through bit- ip error channel. Quantum Inf. Process 13, 1413–1424 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Sheng, Y.B., Guo, R., Pan, J., Zhou, L., Wang, X.F.: Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 14, 963–978 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Inf. Process. 12, 2087–2101 (2014)

    Article  ADS  Google Scholar 

  57. Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010)

    Article  ADS  Google Scholar 

  58. He, B., MacRae, A., Han, Y., Lvovsky, A., Simon, C.: Transverse multimode effects on the performance of photon–photon gates. Phys. Rev. A 83, 022312 (2011)

    Article  ADS  Google Scholar 

  59. Rispe, A., He, B., Simon, C.: Photon–Photon Gates in Bose-Einstein Condensates. Phys. Rev. Lett. 107, 043601 (2011)

    Article  ADS  Google Scholar 

  60. He, B., Lin, Q., Simon, C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83, 053826 (2011)

    Article  ADS  Google Scholar 

  61. He, B., Scherer, A.: Continuous-mode effects and photon–photon phase gate performance. Phys. Rev. A 85, 033814 (2012)

    Article  ADS  Google Scholar 

  62. He, B., Sharypov, A.V., Sheng, J., Simon, C., Xiao, M.: Two-photon dynamics in coherent Rydberg atomic ensemble. Phys. Rev. Lett. 112, 133606 (2014)

    Article  ADS  Google Scholar 

  63. Feizpour, A., Hallaji, M., Dmochowski, G., Steinberg, A.M.: Observation of the nonlinear phase shift due to single post-selected photons. Nat. Phys. 11, 905–909 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by National Natural Science Foundation of China (Grant No. 11574093), Natural Science Foundation of Fujian Province of China (Grant No. 2014J01015), Program for New Century Excellent Talents in Fujian Province University (Grant No. 2012FJ-NCET-ZR04) and Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (Grant No. ZQN-PY113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, Y., Chen, YW. & Lin, Q. Enlarge the scale of W state by connecting multiple existed W states. Quantum Inf Process 15, 761–772 (2016). https://doi.org/10.1007/s11128-015-1200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1200-0

Keywords

Navigation