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Quantum annealing is a promising approach for solving optimization problems, but like all other quantum
information processing methods, it requires error correction to ensure scalability. In this work we experimentally
compare two quantum annealing correction codes in the setting of antiferromagnetic chains, using two different
quantum annealing processors. The lower temperature processor gives rise to higher success probabilities. The
two codes differ in a number of interesting and important ways, but both require four physical qubits per encoded
qubit. We find significant performance differences, which we explain in terms of the effective energy boost
provided by the respective redundantly encoded logical operators of the two codes. The code with the higher
energy boost results in improved performance, at the expense of a lower degree encoded graph. Therefore,
we find that there exists an important tradeoff between encoded connectivity and performance for quantum
annealing correction codes.

I. INTRODUCTION

Steady progress is being made towards the realization of
a universal fault-tolerant quantum computer (e.g., [1, 2]), yet
the development of a scalable architecture remains a tenacious
obstacle. This has spurred the arrival of alternative quantum
computing devices that sacrifice universality in order to al-
low for more rapid progress and thus hopefully usher in the
era of quantum computing, albeit for a limited set of com-
putational tasks, such as quantum simulation [3–5]. Another
example is quantum annealing [6–11], an analog quantum ap-
proach for solving optimization problems [12, 13], that may
offer a quicker route than the standard circuit model towards
the demonstration of the utility of quantum computation. The
task addressed by quantum annealing is the well-known NP-
hard problem of solving for the ground state of a classical
Ising Hamiltonian [14],

HI = ∑
i∈V (G)

hiZi + ∑
{(i, j)}∈E(G)

Ji jZiZ j , (1)

where {hi} are the local fields on the vertices V of the connec-
tivity graph G, {Ji j} are the couplings along the edges E of G,
and Zi is the Pauli-Z operator on the ith qubit. This is done,
ideally, by evolving the system for a total annealing time t f
according to the time-dependent Hamiltonian

H(t) =−A(t)∑
i

Xi +B(t)HI , (2)

where Xi is the Pauli-X operator on the ith qubit, and where
A(t) and B(t) are the annealing schedules, satisfying A(0)�
B(0) and A(t f )� B(t f ). In the closed system setting, starting
in the ground state of H(0) and evolving adiabatically, the
system is guaranteed to reach the ground state of HI with high
probability [15–17].

Although adiabatic dynamics is robust against certain forms
of decoherence appearing in the more realistic open system

setting [10, 18–23], it remains susceptible to thermal noise
and specification errors [24], which can jeopardize the effi-
ciency of the quantum computation. Therefore, any scalable
quantum annealing architecture will require quantum error
correction [25]. Unfortunately, theoretical progress in quan-
tum error correction for adiabatic quantum computing and
quantum annealing has not enjoyed the same success as that
of other quantum computing paradigms, in spite of recent
advances [26–30]. Physical constraints, such as locality of
the interaction terms in the Hamiltonian [31, 32], and a no-
go theorem constraining what can be achieved with commut-
ing two-local interactions [33], remain stubborn hurdles. An
accuracy-threshold theorem rivaling that of the circuit model
(e.g., [34, 35]) remains elusive despite recent attempts [36].

Still, the absence of such a theorem has not stopped the de-
velopment of analog quantum computing devices, and quan-
tum annealers are now commercially available [37–39]. Can
such devices benefit from some form of error correction? Here
we address this question by comparing two codes and two
quantum annealing devices in the setting of the toy optimiza-
tion problem of finding the ground states of antiferromagnetic
chains.

Work on the first generation D-Wave 1 (DW1) “Rainier”
and second generation D-Wave 2 (DW2) “Vesuvius” proces-
sors has already demonstrated that error correction can sub-
stantially benefit quantum annealing [40–42]. Namely, it
was shown that even a relatively simple quantum repetition
code incorporating energy penalty terms and a decoding pro-
cedure, can significantly improve the success probability of
finding ground states, as well as overcome precision issues in
the specification of the Ising Hamiltonian. This technique is
known as quantum annealing correction (QAC). QAC is de-
signed to work within the present technological restrictions
of available quantum annealers whereby only the problem
Hamiltonian (HI) and not the transverse field Hamiltonian
(∑i Xi) can be encoded. This differs from the standard scheme
of error-suppression via energy penalties for AQC wherein the
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entire Hamiltonian is encoded [26, 30]. This type of encoding
in principle allows for the suppression of arbitrary errors, but
requires k-local interactions with k ≥ 3 [31]. QAC provides
a pragmatic compromise, in that it only suppresses errors that
do not commute with the repetition code stabilizers (i.e., it
does not suppress pure dephasing errors), but is directly im-
plementable since it only requires 2-local ZiZ j interactions.

We use the notation [n,k,d]nP
to denote a distance d code

that uses n physical data qubits and nP dedicated penalty
qubits to encode k qubits [42]. The original QAC code in-
troduced in Ref. [40] is a [3,1,3]1 code, designed to be com-
patible with the D-Wave Chimera hardware graph (shown in
Fig. 1). Recently, Ref. [42] introduced a new [4,1,4]0 code
that uses the same physical resources as the [3,1,3]1 code,
without a dedicated penalty qubit. The two key benefits of
the new code are that (i) the encoded hardware graph corre-
sponding to the [4,1,4]0 code has a higher degree (of con-
nectivity), and (ii) it can be concatenated to give higher dis-
tance codes. Given that the [3,1,3]1 and [4,1,4]0 codes con-
sume the same physical resources, it is natural to ask for a
comparison between the two. Here we address this by test-
ing the two codes on uniform antiferromagnetic chains, the
same problem first studied in Ref. [40]. These problems are
simple—their ground state can be trivially written down—but
they are instructive since they are particularly error-prone in
quantum annealers because of the existence of numerous low
energy excitations (domain walls). We demonstrate that for
sufficiently long chains and sufficiently high noise rates, the
[4,1,4]0 code outperforms the classical strategy of running
four chains in parallel and selecting the best, which also con-
sumes the same physical resources. The [4,1,4]0 code was
shown in Ref. [42] to significantly improve the performance of
quantum annealing in a minor embedding setting, a technique
enabling the embedding of a given graph of interactions G
into one of a smaller degree, by using several physical qubits
to represent a single logical qubit. This is crucial for applica-
tions, where one often starts from a logical problem defined
on a high-degree (even complete) graph [43]. In particular,
the [4,1,4]0 code can be viewed as a minor embedding on the
Chimera graph of two interconnected square graphs, as shown
in Figure 2(b). Here we find that the [4,1,4]0 code is bested
by the [3,1,3]1 code in the setting of chains. We provide and
verify an explanation for this performance difference in terms
of the different effective energy scales generated by the two
codes.

A novel aspect of this work is that we compare two different
quantum annealing devices, namely two DW2 devices with
somewhat different operating characteristics. This allows us
to observe the role of temperature effects, among others.

This paper is organized as follows. In Sec. II, we briefly
review QAC in the context of the [4,1,4]0 and [3,1,3]1 codes,
including decoding strategies. In Sec. III we describe our
benchmarking procedure and define the strategies that QAC
is compared against. Section IV presents our experimental re-
sults. Theoretical analysis is provided in Sec. V. We conclude
in Sec. VI. Additional details are provided in the Appendix.

II. QAC USING THE [4,1,4]0 AND [3,1,3]1 CODES

A. Layout

We first briefly review the layout of the [4,1,4]0 and
[3,1,3]1 codes, which are both quantum repetition codes
against bit-flip errors. The qubits on the Chimera graph of the
D-Wave device (depicted in Fig. 1) are arranged in a square
grid of unit cells, where each unit cell forms a complete K4,4
bipartite graph. This graph supports a number of QAC codes
wherein each encoded qubit is represented by several physi-
cal qubits, which we call an “encoded group.” Figure 2 de-
scribes the [4,1,4]0 code. We split the unit cell horizontally
into two halves. The top and the bottom halves separately
form two encoded qubits, where each of the four physical
qubits are maximally connected via intra-cell ferromagnetic
penalty couplings. The encoded qubit connects to the encoded
qubits on each side via inter-cell problem couplings and also
connects to the other encoded qubit in its unit cell via intra-
cell problem couplings. On the Chimera graph, this generates
an 8× 8× 2 lattice, as shown in Fig. 3. Incidentally, this is
the two-level-grid (2LG) used in the original proof of the NP-
hardness of the Ising model [14].

The [3,1,3]1 code splits a unit cell vertically into two
halves. As shown in Fig. 4, the three qubits on either half
of the unit cell are combined with one qubit on the opposite
half of the cell, which plays the role of a dedicated penalty
qubit, to form an encoded qubit. Each unit cell thus con-
tains two encoded qubits. This construction gives rise to an-
other encoded graph, which is shown in Fig. 5. While both
the [4,1,4]0 code and the [3,1,3]1 code use the same number
of physical qubits and generate a non-planar encoded graph,
their encoded graphs differ in connectivity, with the [4,1,4]0
code having the advantage of degree 5 over the degree 3 of the
[3,1,3]1 code.

B. Encoding

Encoding is achieved by replacing the Pauli-Z operators in
the Ising Hamiltonian in Eq. (1) by their encoded counterparts.
Thus, the encoded Ising Hamiltonian can be written as

HI = ∑
i∈V (G)

hiZi + ∑
{(i, j)}∈E(G)

Ji jZiZ j , (3)

where the hi and Ji j values are inherited from the original
problem Hamiltonian, Eq. (1), and where G ⊂ G is the en-
coded graph. G is also a minor of G, i.e., it is formed by
collapsing vertices and removing certain edges. To tie the en-
coded group together, we introduce an energy penalty Hamil-
tonian HP, which is the sum of the stabilizer generators of
the code. The energy penalty Hamiltonian serves to energet-
ically penalize differences among the physical qubits in the
encoded group, which helps to suppress bit flip errors. With
the energy penalty term included, the overall time-dependent
Hamiltonian during the evolution is

H(t) = A(t)HX +B(t)(αHI + γHP) , (4)
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where HX = −∑i Xi is the original (unencoded) transverse
field, and (α,γ) are two controllable experimental parame-
ters that can be varied in the range [0,1] to control the rel-
ative strength of the problem and the penalty Hamiltonians.
Because HP is a part of physical problem Hamiltonian HI it
inherits the latter’s time-dependence, i.e., is turned on via the
annealing schedule B(t). This aspect of QAC differs from
standard error suppression [26].

Note that HX is itself a sum of bit-flip operators, so it plays
a dual role: it is used to prepare the initial superposition state
(its ground state), and is an “error” from the perspective of
the penalty Hamiltonian. This is unavoidable in the setting of
the D-Wave device, which (also unlike Ref. [26]) prevents HX
from being encoded, as this would require many-body X⊗n

terms, which are experimentally unavailable. Because of this
tension there is an optimal penalty value γ that depends on α ,
the problem instance, and other variables. In particular, the
optimal γ keeps decodable states lower in the energy spec-
trum. We shall return to this point later.

1. [4,1,4]0 code

For the [4,1,4]0 code, the encoded Pauli-Z operators can be
constructed from physical operators as follows:

Zi 7→ Zi =
1
2
(Z1

i +Z2
i +Z3

i +Z4
i ) , (5a)

ZiZ j 7→ ZiZ j = ∑
k

Zk
i Zk

j , (5b)

where k runs over two of the four physical qubits depicted in
Fig. 2(a), i.e., solid lines of the same color in that figure. By
encoding in this fashion, we boost the Ising problem energy
scale uniformly by a factor of two. The penalty Hamiltonian
is chosen as indicated by the dotted couplings in Fig. 2(a), i.e.:

HP =−
N

∑
i=1

(Z1
i Z2

i +Z1
i Z3

i +Z2
i Z4

i +Z3
i Z4

i ) , (6)

where henceforth N = |V (G)| denotes the number of encoded
qubits.

2. [3,1,3]1 code

The [3,1,3]1 code uses a similar construction, except a dis-
tinction is made between the four physical qubits in the en-
coded group. They are categorized into a single “penalty
qubit” and three “data qubits,” depicted in Fig 4(a). Now the
encoded Pauli-Z operators are constructed from physical op-
erators as follows:

Zi 7→ Zi = Z1
i +Z2

i +Z3
i (7a)

ZiZ j 7→ ZiZ j = ∑
k

Zk
i Zk

j (7b)

where k runs over the three data qubits. This encoding boosts
the energy scale by a factor of three, which is more than the

boost provided by the [4,1,4]0 code. The importance of this
difference is discussed in detail below. The penalty Hamil-
tonian, which is again the sum of the stabilizer generators of
the code, is formed by coupling the data qubits to the penalty
qubit, i.e.:

HP =−
N

∑
i=1

(Z1
i ZP

i +Z2
i ZP

i +Z3
i ZP

i ) . (8)

C. Decoding strategies

The encoded state is decoded via a majority vote on the
physical qubits in an encoded group. Since the number of
qubits in the [4,1,4]0 code is even, a majority vote alone does
not suffice since ties are possible. To decode in such cases we
follow two different decoding schemes (see also Ref. [42]):

• Coin tossing (CT). We flip an unbiased coin to break
each tie, i.e., we assign a random ±1 value to each en-
coded qubit. This random decoding strategy serves as a
baseline against which we can compare other strategies.

• Energy Minimization (EM). The tied qubits can be
treated as an Ising system with effective local fields (due
to the now fixed decoded qubits) and couplings to other
tied qubits. This (hopefully small) system is then solved
exactly by explicitly checking the energy of all possi-
ble configurations. EM is guaranteed to give the lowest
possible energy from decoding, and it remains a feasible
decoding scheme as long as the size of the tied clusters
does not scale with the size of the problem1.

We call an excited physical state “decodable” if, upon apply-
ing either of the decoding procedures described above, the de-
coded state is an encoded ground state. When this happens,
we declare a success. For a given decoding scheme at a given
problem energy scale α , we always locate the optimal energy
penalty strength γopt that maximizes the success probability.

III. BENCHMARKING USING ANTIFERROMAGNETIC
CHAINS

We implement an (unencoded) N-qubit antiferromagnetic
chain with the following Ising Hamiltonian:

HI =
N−1

∑
i=1

ZiZi+1 . (9)

In order to quantify the performance of the QAC scheme, we
also test two classical strategies and one additional quantum
strategy [40–42].

1 It was shown in Ref. [42] that in general this is related to the per-site per-
colation threshold of the encoded graph, though this is not relevant in the
case of chains.
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• Unprotected (U): In this case we directly embed the
Hamiltonian in Eq. (9) on the device hardware graph.
Each run in which either one of the two degenerate
ground states of the chain is found is then declared a
success.

• Classical (C): Here we use simple classical repetition,
i.e., we run four copies of the chain in parallel. This
uses an equal number of physical qubits as our QAC
scheme. A run is then considered a success if at least
one of the four copies is in one of the two ground states.
If p is the success probability for the U case, then, as-
suming the chains running in parallel are independent,
the success probability for the C strategy is 1−(1− p)4

(i.e., at least one chain is correct).

• Energy Penalty (EP): Here we encode into either the
[4,1,4]0 or the [3,1,3]1 code, including the energy
penalty, but we do not decode. That is, we declare a suc-
cess only when the physical ground state of the physical
graph obtained after encoding is observed (note that this
graph is not a chain). We refer to this as the EP strat-
egy since it relies only on the energy penalty, but not on
decoding, to increase the success probability.

The comparison of the U, C, EP and QAC strategies al-
lows us to isolate different aspects of our overall error cor-
rection strategy. The U case is the baseline against which all
other strategies are measured. EP informs us about whether
the energy penalty is helping. In order for QAC to be consid-
ered successful, it should exhibit better performance than the
C strategy.

The experiments detailed next were performed on two dif-
ferent programmable quantum annealing devices. The DW2
processor at the USC Information Sciences Institute (DW2-
ISI) has 504 functional qubits with an operating tempera-
ture of 16± 1 mK. Another DW2 processor, at D-Wave Inc.
in Burnaby (S6) had 476 operational qubits and operated at
11± 1 mK2. These devices and the underlying technology
have been described before in detail in various publications
(e.g., Refs. [37–39, 44]).

All experiments were performed with 30 instances of ran-
domly placed chains on the hardware graph. The error bars
in all figures below are the standard error of the means cal-
culated over these 30 instances. Each chain instance was run
1000 times (in a single programming cycle), and the fraction
of successful runs was taken to be the success probability of
an instance.

IV. EXPERIMENTAL RESULTS

In this section we present our success probability results
for the various strategies and the two devices tested, and we
analyze these results from a number of different angles. All
our results use optimized penalty values.

2 Both processors have meanwhile been dismantled.

A. Success Probability Comparison

Figure 6 displays the DW2-ISI results. It shows that for the
highest chain length studied (N̄ = 98) the [4,1,4]0 code (with
EM) is bested by the C strategy at higher α , but outperforms
the C strategy at lower α , corresponding to a transition from
a regimes of low to high error rates. The cross-over point
occurs around α = 0.6. The [3,1,3]1 code provides superior
error correction at all scales for this largest size, confirming
and extending the results of Ref. [40].

Figure 7 displays the same for the S6 device. Since this de-
vice operated at a lower temperature than the DW2-ISI device,
we expect it to have a lower thermal excitation error rate. This
means that the probability of multiple bit-flips per encoded
qubit will decrease, i.e., more errors will be decodable, and
so we can expect that—all else being equal—QAC will be
more effective. This explains why the α cross-over point for
the [4,1,4]0 code shifts to higher values; it is now closer to
α = 0.9.

In order to demonstrate the independence of the four copies
in the C strategy, we compare the performance of the U and
C strategies in Fig 8. The C strategy’s performance is close to
the one predicted for independent runs, indicating that chains
indeed behave independently. The success probabilities are
high for small chains, but rapidly drop as we increase the
chain length. The same conclusion holds across the range of
scaling parameter α .

In Fig 9, we compare the results for the EP, CT, and EM de-
coding strategies. As expected, the EM strategy outperforms
the EP and CT strategies when decoding chains. The small en-
hancement in the success probability of the EM strategy over
CT indicates that the number of ties is correspondingly small.
This is confirmed, along with additional results compare the
various decoding strategies at other α values, in Appendix B.

B. The role of energy scaling

We now address the performance mismatch between the
two QAC codes. Recall that QAC boosts the problem scale via
a redundant representation of the Zi and ZiZ j operators. One
may expect this energy boost to reduce errors due to the com-
bination of two effects: thermal excitations are suppressed via
the Boltzmann factor, and raising the overall problem energy
scale reduces diabatic transitions by increasing the minimum
gap during the evolution, though the latter effect is difficult
to quantify without diagonalizing the full Hamiltonian H(t)3.
As noted above, the [3,1,3]1 code boosts the problem energy
scale by a factor of three, while the [4,1,4]0 code boosts the
problem energy scale by a factor of two, so we might expect
the [3,1,3]1 code to outperform the [4,1,4]0 code on this basis
alone.

To compare the performance of the two codes we can equal-
ize their effective problem energy scales, defined as α times

3 See Ref. [41] for an analytically solvable model that exhibits an increased
gap via this mechanism.
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the boost factor due to the redundancy in representing the Zi
and ZiZ j operators. We set α = 0.3 for the [3,1,3]1 code and
α = 0.45 for the [4,1,4]0, so that, after the energy boost is
accounted for, the effective scale of both is 0.9. We first com-
pare the two using the EP strategy in order to eliminate the
role of decoding. Figure 10(a) reveals that the two codes per-
form almost identically when tested at the same effective en-
ergy scale, indicating that the protection offered by both codes
is quantitatively determined by this scale. Figure 10(b) shows
the results after decoding, with a slight advantage for the ma-
jority vote decoding of the [3,1,3]1 code over the energy min-
imization of the [4,1,4]0 code.

C. Decodable states: energy vs Hamming weight

We expect both codes to enable correct decoding of phys-
ical states that are a small Hamming distance away from the
physical ground state, but not when the physical state is far
away in Hamming distance from the physical ground state.
Figure 11 confirms this intuition. Additionally, we note that
for both codes we can correct highly excited states, as long
as they are within a small Hamming distance from the phys-
ical ground state. Thus, the requirement of remaining in the
ground state throughout the evolution, which is impractical for
non-zero temperature quantum annealers but is typically the
condition imposed by adiabaticity in closed-system AQC, is
seen to be overly restrictive in the present setting, since QAC
is able to tolerate certain excitations out of the ground state.
The observation that error correction for AQC or quantum an-
nealing is designed to tolerate excitations has of course been
made before, e.g., in Refs. [24, 31, 40].

Figure 11 reveals a striking difference between the [3,1,3]1
and [4,1,4]0 codes. The latter exhibits many undecodable
states over the entire range of Hamming distances from the
encoded ground state, starting from the second excited state.
The [3,1,3]1 code, on the other hand, exhibits a large Ham-
ming distance separation between decodable and undecodable
states, with the latter appearing only for relatively high excited
states. This reflects the higher effectiveness of the penalty
term in the [3,1,3]1 code, and at the same time gives a de-
tailed view of the different failure mechanisms of both codes.

D. The role of temperature

Having access to two quantum annealers operating at two
different temperatures and with different characteristics (see
Table II), we can compare the performance of the two devices
at equivalent programming parameters. We show in Fig. 12 a
correlation plot for instances encoded using the [4,1,4]0 code,
with equal γopt for a given α . We observe a clear advantage
for the S6 device, which we attribute to its lower operating
temperature.

E. Behavior of the optimal energy penalty for the [4,1,4]0 code

It is instructive to study the dependence of the optimal
penalty value on α and chain length N. Figure 13 shows
the results of the optimization of success probabilities for the
[4,1,4]0 code on the two quantum annealing devices. The
optimal penalty value scales with α , i.e., γopt ∝ α , which
is quite unlike the behavior of the [3,1,3]1 code reported in
Ref. [40], for which γopt was found to be essentially constant
(this is reproduced in Appendix A). We may perhaps attribute
this difference to the fact that the [3,1,3]1 code has a dedi-
cated penalty qubit which is therefore not as sensitive to val-
ues of the problem couplings as are the data qubits of the
[4,1,4]0 code, which participate simultaneously in the penalty
and problem Hamiltonians.

Figure 13 also shows that lower values of γopt were required
on the S6 device, which can again be attributed to its lower
operating temperature.

Appendix A provides additional results, showing the full
dependence of the success probabilities on the penalty values,
α , and chain length.

V. THEORETICAL ANALYSIS

In this section we provide a theoretical analysis of some
of our results. In particular, we provide a simple thermody-
namic explanation of the performance difference between the
[4,1,4]0 and [3,1,3]1 codes, which we can attribute primar-
ily to the effective energy scale. In addition, we explain the
decodability of the [4,1,4]0 code in terms of an intuitively ap-
pealing criterion of the ordering of decodable vs undecodable
excited states.

A. Thermodynamic comparison

To gain a better understanding, we compare the theoretical
performance of the two codes for decoding a single encoded
qubit using a simple thermodynamic argument (see Ref. [45]
for a much more detailed analysis of the QAC partition func-
tion along the annealing evolution, for a fully connected ferro-
magnetic transverse field Ising model). We assume the pres-
ence of a local field of strength h acting on the encoded qubits;
this would translate to a local field of h̃ = h/2 on all physical
qubits of the [4,1,4]0 code [by Eq. (5a)], and a local field
of h̃ = h on the three data qubits of the [3,1,3]1 code [by
Eq. (7a)]. If h < 0, then the state |0000〉 is the ground state of
the system. Success would be declared if the evolution takes
the system to this state, or if of the final state is correctly de-
codable to |0〉. Tables Ia and Ib enumerate all 16 cases along
with their energy penalty and decodability for the two codes.

Let us now assume that the state at the end of the anneal is
thermal. The Boltzmann weight of any of the 16 states is given
by e−β (2vγ−h̃m)/Z where m = −∑i si is the magnetization, v
counts the number of violated couplings, β = 1/kT is the in-
verse temperature, and Z is the partition function. The proba-
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1 2 3 p 2v m mult dec
0 0 0 0 0 -4 1 y
0 0 1 0 2 -2 3 y
0 1 1 0 4 0 3 n
1 1 1 0 6 2 1 n
0 0 0 1 6 -2 1 y
0 0 1 1 4 0 3 y
0 1 1 1 2 2 3 n
1 1 1 1 0 4 1 n

(a) [3,1,3]1 code. The first three columns are the values of the
data qubits; the fourth column is the penalty qubit; the fifth
is the energy penalty counted as twice the number of vio-
lated couplings v; the sixth is the magnetization m =−∑i si;
the seventh is the multiplicity, which is the number of states
that are topologically equivalent to the state shown, up to
relabelling of qubits; and the last is the decodability of the
state.

1 2 3 4 2v m mult dec
0 0 0 0 0 -4 1 y
0 0 0 1 4 -2 4 y
0 0 1 1 4 0 2 t
0 1 0 1 4 0 2 t
0 1 1 0 8 0 2 t
0 1 1 1 4 2 4 n
1 1 1 1 0 4 1 n

(b) [4,1,4]0 code. The first four columns are the values of the
data qubits; the fifth is the energy penalty; the sixth is the
magnetization m = −∑i si; the seventh is the multiplicity,
which is number of states that are topologically equivalent
to the state shown, up to relabelling of qubits; and the last
is the decodability, where “t” denotes a tie. Rows 3–5 de-
note three distinct ways of placing the two plus and two
minus states, where the qubits are numbered 1–4 clockwise,
starting from top-left [as in Fig. 2(a)].

TABLE I: Comparison of the two codes for a 1-qubit encoded problem with a local field.

bility perr for an error in the [3,1,3]1 code case is the sum of
the Boltzmann factors of the undecodable states, while for the
[4,1,4]0 code we must also include the tied cases with a factor
of 1/2, assuming that these cases are decoded by coin tossing.
We write Z = W +W ′ where W is the sum of the unnormal-
ized Boltzmann factors for the encoded error cases (rows with
‘n’ in the decodability column of tables Ia and Ib, and half of
the ‘t’ cases in table Ib) and W ′ is the sum of the decodable
cases (rows with ‘y’ in the decodability column of tables Ia
and Ib, and the other half of the ‘t’ cases in table Ib). The
error probabilities p[3]/[4]err are functions of γ and h, where the
labels [3]/[4] label the [3,1,3]1/[4,1,4]0 code respectively:

p[3]
err =

W[3]

W[3] +W ′[3]
, p[4]

err =
W[4]

W[4] +W ′[4]
, (10a)

W[3] = 3e−β (4γ+h)+ e−β (6γ+3h)+3e−β (2γ+2h)+ e−3βh ,
(10b)

W ′[3] = 3e−β (4γ−h)+ e−β (6γ−3h)+3e−β (2γ−2h)+ e3βh ,

(10c)

W[4] =
1
2

(
4e−4βγ +2e−8βγ

)
+4e−β (4γ+h)+ e−2βh , (10d)

W ′[4] =
1
2

(
4e−4βγ +2e−8βγ

)
+4e−β (4γ−h)+ e2βh . (10e)

We minimize the error probabilities with respect to γ for
each value of h, noting that the optimal γ value is different for
the two codes. Figure 14(a) shows the error rates of the two
codes as βh is varied. We note that the [3,1,3]1 code exhibits
a lower error rate than the [4,1,4]0 code. This agrees with
our experimental findings and is a simple consequence of the
[3,1,3]1 code operating at a higher boosted energy scale than
the [4,1,4]0 code.

We also compare the error rates at equivalent effective en-
ergy scales, i.e., 2h/3 for the [3,1,3]1 code and h for the

[4,1,4]0 code. Figure 14(b) shows that at equivalent effec-
tive energy scales the two codes have similar error rates, with
the [3,1,3]1 code performing slightly worse for all βh values.
This is the opposite of the experimental findings presented in
Fig. 10 and suggests that the output of the D-Wave devices
for these problems is not fully captured by the thermal model.
Nevertheless, this analysis confirms that the error rate due to
a thermal bath would be similar for the two codes, when op-
erated at equivalent effective energy scales.

B. Decodability of the [4,1,4]0 code

In order to study the decodability of the [4,1,4]0 code,
and in particular the effect of varying the penalty strength
γ , we consider two antiferromagnetically coupled encoded
qubits, decoded via EM. In Fig. 15, we show how different
bit-flip errors can accumulate on a two qubit chain, pushing
the system into one of the excited states, and the energy gap
of these excited state from one of the ground state. We show
in Fig. 16(a) the spectrum of these excited states and whether
they can or cannot be decoded at α = 0.3, as a function of γ .
For sufficiently high γ a non-decodable state becomes lower
in energy than a decodable state. This coincides with the
optimal γ value from a quantum adiabatic master equation
simulation [46]. When the EP strategy is used instead of EM,
the optimal γ occurs at a larger value as shown in Fig. 16(b).

VI. CONCLUSIONS

Quantum annealing will require error correction in order to
become a scalable form of quantum information processing.
While our results depend heavily on the Chimera architecture
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of the D-Wave devices, it is only possible to make progress in
the field of experimental quantum error correction by studying
specific devices that provide snapshots of evolving technolo-
gies (e.g., Refs. [1, 2, 47]). With this caveat in mind, our study
contains several valuable long-term lessons.

Specifically, in this work we studied two quantum anneal-
ing correction codes—the [4,1,4]0 and [3,1,3]1 codes—and
compared their performance using the simple case of antifer-
romagnetic chains, on two different experimental platforms
belonging to the same generation of D-Wave Two devices.
The two codes differ in the energy boost they provide by re-
dundantly encoding their logical operators, and the two quan-
tum annealers differ in operating temperature. We have shown
that these differences translate into performance gains as ex-
pected, i.e., both a higher energy boost and a lower operat-
ing temperature result in improved success probabilities. This
conclusion has immediate implications for the design of fu-
ture quantum annealing devices: despite results indicating that
thermal effects can assist AQC [48], and our (and previous
[24, 31, 40]) results supporting the notion that error correc-
tion can tolerate thermal excitations, significant performance
gains are to be realized via the straightforward mechanisms of
cooling and increasing the energy scale.

Despite delivering lower success probabilities, the [4,1,4]0
code with the smaller energy boost is interesting, since it gives

rise to an encoded graph with higher degree than the [3,1,3]1
code, and physical implementations of quantum annealers are
likely to be subject in general to constraints that reduce con-
nectivity. The tradeoff between code performance and the de-
gree of the encoded graph may thus be worthwhile, as long as
an improvement over purely classical error correction strate-
gies is achieved, as we have demonstrated here for sufficiently
high noise levels and problem sizes. An intriguing question is
whether this tradeoff is necessary. Our work will hopefully
inspire the design of quantum annealing architectures with
higher connectivity and of codes that better leverage encoded
graph degree and energy boosts.
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Supplementary Material

In this appendix we present some additional results to complement the main text.

Appendix A: Optimizing γγγ

For each chain instance, we identified the optimal penalty coupling strength γ by varying it in increments of 0.1 in the range
[0,1]. This is shown in Figs. 17-20 where we plot the success probability as a function of γ and N. We note that for the [4,1,4]0
code the optimal penalty scales with α , i.e., γopt ∝ α . Lower values of γopt are observed on the S6 device. For the [3,1,3]1 code,
the optimal γ is around γ ≈ 0.2−0.3 for all α values studied, and the optimal values are unchanged across the two devices.

Appendix B: Comparing decoding strategies

In the main text we compared four strategies: U, C, the [4,1,4]0 code, and [3,1,3]1 code. We also used different decoding
strategies: EM, EP, and CT. Figure 21 and Fig. 22 show all these strategies for a few chosen values of the scaling parameter α for
the DW2-ISI and S6 devices, respectively. The U strategy is always worst. The [3,1,3]1 code can be seen to outperform all other
strategies at each α value for sufficiently long chains. The [4,1,4]0 code outperforms the C strategy below a device-dependent
α value and for sufficiently long chains. The fact that the success probabilities of the CT and EM strategies are nearly equal
suggests that there are very few tied qubits in the [4,1,4]0-encoded chains, an observation that holds for both devices.

In the main text we also presented indirect evidence for the small number of ties in the the [4,1,4]0 code. Figure 23 shows
this directly.
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(b) S6 hardware graph

FIG. 1: The DW2 processors have unit cells arranged in an 8 × 8 grid, each containing 8 qubits forming a K4,4 bipartite graph.
The active (inactive) qubits are shown in green (red), and active couplers are shown as solid black lines. Out of the 512
qubits on the full DW2 Chimera graph, 504 and 476 were functional on the DW2-ISI and S6 devices, respectively. A
comparison of the physical parameters of the two devices is given in Table II.

Annealer Number of working qubits Temperature(mK) MAFM (pH) 1/ f Amplitude
DW2-ISI 504 16±1 1.33 7.5±1

S6 476 11±1 1.92 4.1±0.3

TABLE II: Physical parameter of the two quantum annealing devices used in our study. Both devices belong to the same
Vesuvius generation, with the major difference being a lower temperature and lower noise on the S6 device, and
a higher qubit yield on the DW2-ISI device. MAFM is the inter-qubit coupling energy when a coupler is set to pro-
vide the maximum antiferromagnetic (AFM) coupling. 1/ f is the low frequency flux noise in units of flux quanta,
Φ0 = h/2e, where h is the Planck constant and e is the electron charge. Details about these physical parameters can
be found in Ref. [39].
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FIG. 2: Construction of the [4,1,4]0 code. Two encoded qubits are constructed using the four physical qubits in the upper and
the lower halves of the unit cell. In (a), the dotted lines represent the penalty terms. The solid lines form the encoded
Hamiltonian couplings. Since each encoded coupling is formed by 2 physical couplings, the energy scale of the Ising
problem is boosted by factor of 2. In (b) we show the section of the encoded graph formed by (a), with the same color
scheme for the couplings. Roman letters labels the same encoded qubits in (a) and (b).
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(b) S6 device

FIG. 3: The [4,1,4]0 encoded graph. Each encoded qubit is composed of four physical qubits, and the encoded couplings are
formed from two physical couplers. The green (red) circles denote functional (inactive) qubits. Out of 128 possible
encoded qubits on the complete graph, 120 were functional on the DW2-ISI device (a) and 99 on the S6 device (b).
The encoded graph is a 2-level grid [14] and has degree 5.
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FIG. 4: Construction of the [3,1,3]1 code. An encoded qubit is constructed using three data qubits from each vertical half
of the unit cell and a penalty qubit from the opposite half. In (a), the four physical qubits forming the encoded group
are shown in the same color, and the dashed lines represent the stabilizer couplings. The solid lines form the encoded
Hamiltonian coupling. Since each encoded coupling comprises 3 physical couplings, the energy scale of the encoded
problem is boosted by a factor of 3. In (b) we show the section of the encoded graph formed by (a), with the same
color scheme for the couplings. In both (a) and (b), the Roman alphabet labels the respective encoded qubits.
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FIG. 5: The [3,1,3]1 code encoded graph. Each encoded qubit is composed of four physical qubits, and the encoded cou-
plings are formed from three physical couplers. The green (red) circles denote functional (inactive) qubits. Orange
circles indicate encoded qubits that have all three data qubits but are missing their penalty qubits. Out of 128 possible
encoded qubits on the complete graph, 120 were fully functional while 3 were missing penalty qubits on the DW2-
ISI device (a); 95 were fully functional and 18 were missing penalty qubit on the S6 device (b). We only used fully
functional encoded qubits in our experiments. The encoded graph has degree 3.
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(d) N = 98

FIG. 6: Results for the DW2-ISI device. Panels (a), (b) and (c) compare the results for chains using the U, C, [3,1,3]1 code
and [4,1,4] code at scaling parameters α = 1, 0.5 and 0.4 respectively. Panel (d) shows a comparison at a fixed chain
length of N = 98 as α is varied. For α . 0.5 and sufficiently long chain lengths, the [4,1,4]0 code starts to outperform
the C strategy. The [3,1,3]1 code outperforms all other strategies at all values of α , for sufficiently long chain lengths.
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(d) N = 80

FIG. 7: Results for the S6 device. Panels (a), (b) and (c) compare the results for chains using the U, C, [3,1,3]1 code and
[4,1,4] code at scaling parameters α = 1, 0.5 and 0.4 respectively. Panel (d) shows a comparison at a fixed chain
length of N = 80 as α is varied. For α . 0.90 and for sufficiently long chains, the [4,1,4]0 code starts to outperform
the C strategy. The [3,1,3]1 code outperforms all other strategies at all values of α , for sufficiently long chain lengths.
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FIG. 8: Independence test. Using the data from the DW2-ISI device, we compare the performance of the U strategy to the C
strategy at α = 0.45. The C strategy agrees with the prediction from binomial theory that assumes independent chains.
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FIG. 9: Decoding strategies for the [4,1,4]0 code. DW2-ISI device at α = 0.70. The EP strategy is marginally improved
upon by the use of decoding. Ties are broken by either coin tossing or energy minimization; the latter performs slightly
better at all chain lengths.
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FIG. 10: Code comparison at equalized effective energy scales for the DW2-ISI device. Panel (a) compares the EP perfor-
mance of the two codes at equivalent effective energy scales: 3 × 0.3 and 2 × 0.45 for the [3,1,3]1 and [4,1,4]0 code,
respectively. Panel (b) compares the two codes after decoding. Code performance is essentially indistinguishable in
the EP case, indicating that the effective energy scale is the dominant performance-determining factor. The [3,1,3]1
code exhibits a slight advantage across all chain lengths after decoding.
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FIG. 11: Decodable states. Panels (a) and (b) display the performance of the [3,1,3]1 and [4,1,4]0 codes, respectively, for the
longest chain of length 100, α = 1, and optimal γ observed on the DW2-ISI device. We show the energies of all the
states observed relative to the encoded ground state along the vertical axis, while the horizontal axis is the Hamming
distance from the encoded ground state. We did not find any decodable states of Hamming distance higher than 50.
Color indicates the fraction of decodable states at each observed energy and Hamming distance. States with a small
Hamming distance are mostly decodable. The [3,1,3]1 code is decoded via majority vote, while the [4,1,4]0 code
uses the EM strategy.
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FIG. 12: Comparison of the performance of the ISI and S6 devices. Correlation plot of the success probability on the
S6 and ISI devices for instances that have the same γopt (for the same α and chain length) using the EP strategy
[panel (a), with 264 instances] and the QAC with EM strategy [panel (b), with 376 instances]. Instances to the left
(right) of the diagonal line have a higher success probability on the S6 (DW2-ISI) device. Virtually all instances were
solved with a higher success probability on the S6 device.
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(b) DW2-ISI device — QAC with EM decoding
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FIG. 13: Optimal γ for the [4,1,4]0 code. Panels (a) and (b) show the optimal γ values for the DW2-ISI device. Panels (c)
and (d) show the same for the S6 device. For three representative values of the scaling parameter α , we note that the
EP strategy consistently requires a higher value for the optimal γ . There is a slight tendency for longer chains to have
a larger optimal penalty. Additionally, since the DW2-ISI device operates at a higher temperature and hence is more
prone to errors, it requires a higher value for the optimal γ than the S6 device. The difference is most prominent in the
QAC case, i.e., when comparing panels (b) and (d).
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FIG. 14: Thermodynamic comparison of codes. Panel (a) shows the thermal error rates of the two codes at the same encoded
energy scale h. Panel (b) compares the two codes at equivalent effective energy scales, i.e., h for the [4,1,4]0 code and
2h/3 for the [3,1,3]1 code.
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FIG. 15: Two coupled encoded [4,1,4]0 code qubits. The two encoded [4,1,4]0 code qubits consists of 8 physical qubits. We
show one of the two degenerate ground states, and all inequivalent ways in which bit-flip errors might accumulate on
one of the encoded qubits. Each flip leads to an excited state. The number in parentheses denotes the multiplicity of
such states, followed by the energy separation from the shown ground state. The ↑ symbol denotes the correct state of
the qubit while the ⇑ symbol denotes the occurrence of a flip.
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FIG. 16: Decodability analysis for α = 0.3. (a) The first few excited states at the final time for two coupled [4,1,4]0 code
qubits. The legend labels refer to the states in Fig. 15, indicating their decodability. The optimal γ value occurs right
before the first excited state goes from being decodable to undecodable. Logical error states are represented by solid
lines, decodable states by dashed lines. Thick lines indicate degenerate excited states, some of which are decodable,
and some of which are encoded errors. (b) Success probability calculated using the adiabatic master equation [46].
Inset: a zoomed out version. The success probability of the QAC strategy is maximized near γ ≈ 0.3, which agrees
with the value of γ in (a) where an undecodable state becomes the first excited state. Population lost to this state in the
simulations cannot be recovered after decoding. This explains the comment made in Sec. II B that the optimal γ keeps
the decodable states lower in the energy spectrum. The EP strategy is optimized at a larger value of γ .
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FIG. 17: Optimal γ for the [4,1,4]0 code on the DW2-ISI device. The color scale represents the success probability, while
the white circles indicate the optimal penalty value for a given chain length. The top and bottom three panels show
the EP and QAC with EM strategies, respectively. The optimal γ increases proportionally to the problem scale α . A
higher γopt is required for the EP case, where we perform no decoding. The success probability depends strongly on
N, γ , and α .
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FIG. 18: Optimal γ for the [3,1,3]1 code on the DW2-ISI device. The optimal γ increases proportionally to the problem
scale α in the EP case, but remains fairly constant for the QAC case, in agreement with Ref. [40]. The success proba-
bility depends strongly on N and α , but not as strongly on γ .
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FIG. 19: Optimal γ for the [4,1,4]0 code on the S6 device. The optimal γ increases proportionally to the problem scale α . A
higher γopt is required for the EP case, where we perform no decoding. The success probability depends strongly on
N, γ , and α .
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FIG. 20: Optimal γ on the S6 device for the [3,1,3]1 code. The optimal γ increases proportionally to the problem scale α

in the EP case, but remains fairly constant for the QAC case, again in agreement with Ref. [40] (though note that the
latter used the DW2-ISI device). The success probability depends strongly on N and α , but not as strongly on γ .
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(a) α = 0.1
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(b) α = 0.3
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(c) α = 0.5
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(d) α = 0.7
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(e) α = 0.9
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(f) α = 1.0

FIG. 21: Performance comparison for the DW2-ISI device. The [4,1,4]0 code starts to outperform the C strategy below α ≈
0.5 and for sufficiently long chains.
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(b) α = 0.3

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Chain length N/N

Pr
ob

ab
ili

ty
of

co
rr

ec
ta

ns
w

er

(c) α = 0.5
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(d) α = 0.7
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(e) α = 0.9
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FIG. 22: Performance comparison for the S6 device. The [4,1,4]0 code starts to outperform the C strategy below α ≈ 0.9
and for sufficiently long chains.
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FIG. 23: Ties in the [4,1,4]0 code. The number of ties per qubit is shown for each value of α ∈ [0.1,1.0], minimized over the
penalty strength γ . The number of ties generally increases with the chain length N and decreases with α . The largest
number of ties per qubit is ∼ 5×10−4.
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