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Abstract Relativistic causality forbids superluminal signaling between distant
observers. By exploiting the non-signaling principle, we derive the exact rela-
tionship between the chained Clauser-Horne-Shimony-Holt sum of correlations
CHSHK and the success probability PK associated with Hardy’s ladder test of
nonlocality for two qubits and K + 1 observables per qubit. Then, by invoking
the Tsirelson bound for CHSHK , the derived relationship allows us to establish
an upper limit on PK . In addition, we draw the connection between CHSHK and
the chained version of the Clauser-Horne (CH) inequality.

Keywords Hardy’s ladder test of nonlocality · Non-signaling principle · Chained
CHSH and CH inequalities · Tsirelson’s bound

1 Introduction

In 1992, Lucien Hardy [1] gave a new proof of nonlocality without inequalities for
two particles that only requires a total of four dimensions in Hilbert space. He
further showed [2] that this proof works for all pure entangled states of two two-
state systems or qubits except for the maximally entangled state. Hardy’s proof
[2] (which concerns two observables for each qubit) was subsequently extended to
the case in which there are K + 1 available dichotomic observables per qubit—
A0, A1, . . . , AK for qubit A and B0, B1, . . . , BK for qubit B, where K = 1, 2, 3, . . .
[3,4]. We will refer to this latter proof as Hardy’s ladder test of nonlocality. In order
to have a contradiction between quantum mechanics and local realism in Hardy’s
ladder scenario, the observables Ak and Bk′ (k, k′ = 0, 1, . . . ,K) are required to

José Luis Cereceda
Telefónica de España, Distrito Telefónica, Edificio Este 1, 28050, Madrid, Spain
E-mail: jl.cereceda@movistar.es

ar
X

iv
:1

50
8.

06
31

7v
1 

 [
qu

an
t-

ph
] 

 2
5 

A
ug

 2
01

5



2 José Luis Cereceda

satisfy the following conditions [3,4]

PK = P (AK = +1, BK = +1) 6= 0, (1)

P (Ak = +1, Bk−1 = −1) = 0, for k = 1 to K, (2)

P (Ak−1 = −1, Bk = +1) = 0, for k = 1 to K, (3)

P (A0 = +1, B0 = +1) = 0, (4)

where P (Ak = i, Bk′ = j) is the joint conditional probability of obtaining the
result i when measuring Ak on qubit A and obtaining the result j when measuring
Bk′ on qubit B (i, j = ±1). According to a local realistic (LR) theory, fulfillment
of the 2K + 1 conditions in (2)-(4) necessarily implies that PK = 0. Quantum-
mechanically, however, we can have PK 6= 0 while all the other conditions in
(2)-(4) are satisfied. The success probability PK of Hardy’s nonlocality argument
is sometimes known as the “Hardy fraction.”

It should be noted that the conditions (2)-(4) could not be satisfied strictly
in practical experiments due to the difficulty of experimentally measuring a null
event. Indeed, even with perfect measurement apparatus it is not possible to
achieve a true “zero” value for the various probabilities because the number of
measurements in a real experiment is necessarily finite [5,6]. Moreover, as pointed
out in Ref. [4], to test experimentally Hardy’s conditions (1)-(4), inequalities are
necessary in order to make sure that the errors do not wash out the logical conun-
drum faced by local realism. One such suitable inequality for Hardy’s ladder test
is the chained Clauser-Horne-Shimony-Holt-type (CHSH) inequality [7,8,9]∣∣∣∣∣

K∑
k=1

E(Ak, Bk−1) +
K∑

k=1

E(Ak−1, Bk) + E(AK , BK)− E(A0, B0)

∣∣∣∣∣ LR
≤ 2K, (5)

which holds for any LR theory, with the correlation function E(Ak, Bk′) defined
by E(Ak, Bk′) = P+(Ak, Bk′)− P−(Ak, Bk′), where

P+(Ak, Bk′) = P (Ak = +1, Bk′ = +1) + P (Ak = −1, Bk′ = −1),

P−(Ak, Bk′) = P (Ak = +1, Bk′ = −1) + P (Ak = −1, Bk′ = +1),

and P+(Ak, Bk′) + P−(Ak, Bk′) = 1. Notice that the 2K + 2 pairs of observ-
ables (A0, B0), (AK , BK), (Ak−1, Bk), (Ak, Bk−1), k = 1, 2, . . . ,K, occurring on
the left-hand side of inequality (5) are precisely those in Eqs. (1)-(4). Evidently,
for K = 1, the inequality (5) reduces to the original CHSH inequality [10]. It
is well known that the maximum quantum violation of the CHSH inequality is
given by Tsirelson’s bound 2

√
2 [11]. Furthermore, Wehner [9] showed that the

corresponding Tsirelson bound for the chained CHSH inequality (5) is given by

∣∣∣∣∣
K∑

k=1

E(Ak, Bk−1) +
K∑

k=1

E(Ak−1, Bk) + E(AK , BK)− E(A0, B0)

∣∣∣∣∣
QM

≤ 2(K + 1) cos
π

2(K + 1)
. (6)
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Let us denote the sum of correlations on the left-hand side of either (5) or (6)
as CHSHK , that is,

CHSHK ≡
K∑

k=1

E(Ak, Bk−1) +
K∑

k=1

E(Ak−1, Bk) + E(AK , BK)− E(A0, B0). (7)

In this paper (Sec. 2), we show that, for the case in which the conditions in
Eqs. (2)-(4) are met, the whole CHSHK expression (7) can be written in terms of
the Hardy fraction PK through the simple relation

CHSHK = 2K + 4PK , K = 1, 2, 3, . . . . (8)

Remarkably, as we will see, relation (8) follows as a consequence of the non-
signaling (NS) principle alone. Every probabilistic theory respecting the NS prin-
ciple (including quantum mechanics) should therefore comply with relation (8).1

This relation was already obtained elsewhere for the simplest case K = 1 [12]. It
has also been derived independently (for K = 1) by Xiang in Ref. [13]. Relation
(8) embodies the precise connection between, on the one hand, Hardy’s ladder test
of nonlocality based on Eqs. (1)-(4) and, on the other hand, the test of nonlocality
based on the generalized CHSH inequality (5).

An immediate implication of relation (8) is that, when the Hardy conditions
(1)-(4) are fulfilled, the inequality (5) is violated by an amount 2K + 4PK ≤ 2K,
or 4PK ≤ 0. It is important to note that this amount is four times bigger than
that obtained for the chained version of the Clauser-Horne (CH) inequality [4,5,
6,14,15]

P (AK = +1, BK = +1)− P (A0 = +1, B0 = +1)

−
K∑

k=1

[
P (Ak = +1, Bk−1 = −1) + P (Ak−1 = −1, Bk = +1)

] LR
≤ 0,

which is the inequality commonly used in the experimental realizations of Hardy’s
ladder test of nonlocality (see, for example, Refs. [4,16,17,18]).

In Sec. 3, we will establish (see Eq. (24) below) the relationship between
CHSHK and the sum of probabilities on the left-hand side of the above CH-type
inequality for the general case in which the probabilities are constrained only by
the NS principle. The relation (8) and its generalization (24) are the main results
of this paper.

Moreover, combining the relation (8) and the Tsirelson bound (6) gives us the
following upper limit for PK

PK

QM

≤ 1

4

[
2(K + 1) cos

π

2(K + 1)
− 2K

]
≡ LK . (9)

Therefore, if quantum mechanics is correct, the Hardy fraction has to be bounded
above by the upper limit LK in Eq. (9). In particular, for the first five values of

1 In Sec. 3, it will be verified that, in fact, the quantum predictions satisfy relation (8).
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Fig. 1 Plot of the upper limit LK (red triangles) and the quantum prediction PQM
K (max)

(green circles) against K (for K = 1 to 100) of the success probability of Hardy’s nonlocality
argument. The horizontal line PGPT

K = 0.5 represents the maximum success probability allowed
by a generalized probabilistic theory.

K, from (9) we obtain

P1 ≤ 1
2 (
√

2− 1) ≈ 0.207106, P2 ≤ 1
4 (3
√

3− 4) ≈ 0.299038,

P3 ≤
√

2 +
√

2− 3
2 ≈ 0.347759, P4 ≤ 5

8

√
10 + 2

√
5− 2 ≈ 0.377641,

P5 ≤ 1
4

(
3(
√

2 +
√

6)− 10
)
≈ 0.397777.

In Fig. 1, we have plotted the upper limit LK for K = 1 to 100. For compar-
ison, we have also plotted the maximum success probability PQM

K (max) achieved
by quantum mechanics. For a given K, this latter probability is obtained by max-
imizing the function PQM

K (x) with respect to x in the interval 0 ≤ x ≤ 1, where
[3,4,19]

PQM
K (x) =

x2

1 + x2

(
1− x2K

1 + x2K+1

)2

.

The asymptotic value of both LK and PQM
K (max) is LK = PQM

K (max) = 0.5 in the

limit K →∞. Quantum-mechanically, the absolute maximum PQM
K (max) = 0.5 is

realized for K → ∞ and a state that is close to maximally entangled (x → 1) [3,
4]. From relation (8) it follows that, as PQM

K (max)→ 0.5, the CHSHK expression
(7) approaches the algebraic limit 2K + 2.2 Furthermore, it is known [20] that
a generalized probabilistic theory (GPT) adhering to the NS principle allows for

2 Incidentally, it is worth pointing out that, in this limit, a direct (“all or nothing”) con-
tradiction between quantum mechanics and local realism emerges in Hardy’s ladder scenario
[19].
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a maximum Hardy’s fraction equal to 0.5 independently of the value of K. This
is indicated in Fig. 1 by the horizontal line PGPT

K = 0.5.3 Indeed, the following
extremal NS probability distribution [20,21]

P (Ak = i, Bk′ =j)=


1
2 , for i = j and ∀k, k′ ∈ {0, 1, . . . ,K} except for k = k′ = 0;

0, for i = j and k = k′ = 0;

0, for i 6= j and ∀k, k′ ∈ {0, 1, . . . ,K} except for k = k′ = 0;
1
2 , for i 6= j and k = k′ = 0,

satisfies all the Hardy conditions (1)-(4) with PK = 0.5, as well as the require-
ments of normalization and non-negativity, and gives the maximum algebraic
bound (namely, 2K + 2) of inequality (5). For K = 1, it corresponds to the
Popescu-Rohrlich-type correlations [22] leading to the maximum algebraic viola-
tion (namely, 4) of the CHSH inequality while preserving relativistic causality (see
Ref. [23] for several variants of the above extremal distribution for K = 1).

2 Chained CHSH Inequality for Hardy’s Ladder Test of Nonlocality

We devote this section to prove relation (8). This is done by employing certain
judiciously chosen relationships imposed by the NS principle. For the Hardy ladder
scenario, this principle requires that the marginal probability P (Ak = i) [P (Bk′ =
j)] of obtaining the result i [j] in a measurement of Ak [Bk′ ] on qubit A [B] is
independent of which measurement B0, B1, . . . , BK [A0, A1, . . . , AK ] is performed
on the distant qubit B [A]. In terms of joint probabilities, this requirement amounts
to the following set of conditions:∑

j=±1

P (Ak = i, B0 = j) =
∑

j=±1

P (Ak = i, B1 = j)

= . . . =
∑

j=±1

P (Ak = i, BK = j) ∀k, i, (10)

∑
i=±1

P (A0 = i, Bk′ = j) =
∑
i=±1

P (A1 = i, Bk′ = j)

= . . . =
∑
i=±1

P (AK = i, Bk′ = j) ∀k′, j, (11)

where k, k′ = 0, 1, . . . ,K and i, j = ±1.

To prove relation (8), we first rewrite the CHSHK expression (7) in the equiv-
alent form

CHSHK = 2K + 2P+(AK , BK)− 2P+(A0, B0)

− 2
K∑

k=1

P−(Ak, Bk−1)− 2
K∑

k=1

P−(Ak−1, Bk).

3 Note that, from relation (8), the limit PK = 0.5 can never be surpassed since this would
imply that CHSHK > 2K + 2, which is impossible by the very definition of CHSHK .
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For the case in which the conditions in (2)-(4) are fulfilled, the above expression
reduces to

CHSHK = 2K + 2PK + 2P (AK = −1, BK = −1)− 2P (A0 = −1, B0 = −1)

− 2
K∑

k=1

P (Ak = −1, Bk−1 = +1)− 2
K∑

k=1

P (Ak−1 = +1, Bk = −1).

Therefore, in order to prove relation (8), it suffices to show that

P (AK = −1, BK = −1) = PK + P (A0 = −1, B0 = −1)

+
K∑

k=1

P (Ak = −1, Bk−1 = +1) +
K∑

k=1

P (Ak−1 = +1, Bk = −1). (12)

In what follows we show that relation (12) is indeed fulfilled for K = 1 and 2,
and then we establish the result generally. In the rest of this section, we employ
the abbreviated notation P ij

kk′ to refer to the joint probability P (Ak = i, Bk′ = j).

2.1 Case K = 1

For K = 1, the NS conditions in Eqs. (10) and (11) read as follows:

P++
00 + P+−

00 = P++
01 + P+−

01

P++
10 + P+−

10 = P++
11 + P+−

11

P−+
00 + P−−00 = P−+

01 + P−−01

P−+
10 + P−−10 = P−+

11 + P−−11

P++
00 + P−+

00 = P++
10 + P−+

10

P++
01 + P−+

01 = P++
11 + P−+

11

P+−
00 + P−−00 = P+−

10 + P−−10

P+−
01 + P−−01 = P+−

11 + P−−11 .

(13)

Furthermore, Hardy’s conditions (2)-(4) for K = 1 mean that

P++
00 = P−+

01 = P+−
10 = 0. (14)

Hence using (14) in (13), we readily obtain

P+−
00 = P++

01 + P+−
01

P++
10 = P++

11 + P+−
11

P−−01 = P−+
00 + P−−00

P−−11 + P−+
11 = P−+

10 + P−−10

P−+
00 = P++

10 + P−+
10

P++
01 = P++

11 + P−+
11

P−−10 = P+−
00 + P−−00

P−−11 + P+−
11 = P+−

01 + P−−01 .

(15)
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Summing all eight relationships in (15) and simplifying gives P−−11 = P++
11 +P−−00 +

P−+
10 + P+−

01 , which is just relation (12) for K = 1.

2.2 Case K = 2

For K = 2, the NS conditions in Eqs. (10) and (11) imply that

P++
00 + P+−

00 = P++
01 + P+−

01 = P++
02 + P+−

02

P++
10 + P+−

10 = P++
11 + P+−

11 = P++
12 + P+−

12

P++
20 + P+−

20 = P++
21 + P+−

21 = P++
22 + P+−

22

P−+
00 + P−−00 = P−+

01 + P−−01 = P−+
02 + P−−02

P−+
10 + P−−10 = P−+

11 + P−−11 = P−+
12 + P−−12

P−+
20 + P−−20 = P−+

21 + P−−21 = P−+
22 + P−−22

P++
00 + P−+

00 = P++
10 + P−+

10 = P++
20 + P−+

20

P++
01 + P−+

01 = P++
11 + P−+

11 = P++
21 + P−+

21

P++
02 + P−+

02 = P++
12 + P−+

12 = P++
22 + P−+

22

P+−
00 + P−−00 = P+−

10 + P−−10 = P+−
20 + P−−20

P+−
01 + P−−01 = P+−

11 + P−−11 = P+−
21 + P−−21

P+−
02 + P−−02 = P+−

12 + P−−12 = P+−
22 + P−−22 ,

(16)

while Hardy’s conditions (2)-(4) for K = 2 are

P++
00 = P−+

01 = P+−
10 = P−+

12 = P+−
21 = 0. (17)

Then, taking into account (17), we pick out the following subset of relationships
among those in the set (16):

P+−
00 = P++

01 + P+−
01

P++
10 = P++

12 + P+−
12

P++
21 = P++

22 + P+−
22

P−−01 = P−+
00 + P−−00

P−−12 = P−+
10 + P−−10

P−−22 + P−+
22 = P−+

21 + P−−21

P−+
00 = P++

10 + P−+
10

P++
01 = P++

21 + P−+
21

P++
12 = P++

22 + P−+
22

P−−10 = P+−
00 + P−−00

P−−21 = P+−
01 + P−−01

P−−22 + P+−
22 = P+−

12 + P−−12 .

(18)

Summing all twelve relationships in (18) and simplifying, we get P−−22 = P++
22 +

P−−00 + P−+
10 + P−+

21 + P+−
01 + P+−

12 , which is just relation (12) for K = 2.
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2.3 The General Case

The above proofs for K = 1 and 2 generalize straightforwardly to an arbitrary
number K + 1 of observables per qubit. To show this, we write the NS conditions
(10) and (11) in the expanded form

K + 1


P++
00 + P+−

00 = P++
01 + P+−

01 = P++
02 + P+−

02 = . . . = P++
0K + P+−

0K

P++
10 + P+−

10 = P++
11 + P+−

11 = P++
12 + P+−

12 = . . . = P++
1K + P+−

1K
...

P++
K0 + P+−

K0 = P++
K1 + P+−

K1 = P++
K2 + P+−

K2 = . . . = P++
KK + P+−

KK

K + 1


P−+
00 + P−−00 = P−+

01 + P−−01 = P−+
02 + P−−02 = . . . = P−+

0K + P−−0K

P−+
10 + P−−10 = P−+

11 + P−−11 = P−+
12 + P−−12 = . . . = P−+

1K + P−−1K
...

P−+
K0 + P−−K0 = P−+

K1 + P−−K1 = P−+
K2 + P−−K2 = . . . = P−+

KK + P−−KK

K + 1


P++
00 + P−+

00 = P++
10 + P−+

10 = P++
20 + P−+

20 = . . . = P++
K0 + P−+

K0

P++
01 + P−+

01 = P++
11 + P−+

11 = P++
21 + P−+

21 = . . . = P++
K1 + P−+

K1
...

P++
0K + P−+

0K = P++
1K + P−+

1K = P++
2K + P−+

2K = . . . = P++
KK + P−+

KK

K + 1


P+−
00 + P−−00 = P+−

10 + P−−10 = P+−
20 + P−−20 = . . . = P+−

K0 + P−−K0

P+−
01 + P−−01 = P+−

11 + P−−11 = P+−
21 + P−−21 = . . . = P+−

K1 + P−−K1
...

P+−
0K + P−−0K = P+−

1K + P−−1K = P+−
2K + P−−2K = . . . = P+−

KK + P−−KK

(19)

with a total of 4(K+1) rows and K equals signs in each row. Furthermore, Hardy’s
conditions in (2)-(4) read as

P++
00 = P−+

01 = P+−
10 = P−+

12 = P+−
21 = . . . = P−+

K−1,K = P+−
K,K−1 = 0. (20)

Then, using the 2K + 1 conditions (20) in (19), we can extract the following
appropriate set of 4(K + 1) relationships:

K + 1


P+−
00 = P++

01 + P+−
01

P++
10 = P++

12 + P+−
12

...

P++
KK−1 = P++

KK + P+−
KK

K + 1



P−−01 = P−+
00 + P−−00

P−−12 = P−+
10 + P−−10

...

P−−K−1K = P−+
K−1K−2 + P−−K−1K−2

P−−KK + P−+
KK = P−+

KK−1 + P−−KK−1

(21a)
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and

K + 1


P−+
00 = P++

10 + P−+
10

P++
01 = P++

21 + P−+
21

...

P++
K−1K = P++

KK + P−+
KK

K + 1



P−−10 = P+−
00 + P−−00

P−−21 = P+−
01 + P−−01

...

P−−KK−1 = P+−
K−2K−1 + P−−K−2K−1

P−−KK + P+−
KK = P+−

K−1K + P−−K−1K

(21b)

such that the right-hand side (rhs) of each of the 2K + 2 relationships in both
subsets (21a) and (21b) contains exactly one of the 2K + 2 joint probabilities
appearing on the rhs of relation (12), with each subset exhausting all these 2K +
2 probabilities. In particular, the probability P++

KK [P−−00 ] occurs on the rhs of
the (K + 1)-th [(K + 2)-th] relationship in each subset. On the other hand, the
probability P−−KK on the left-hand side (lhs) of relation (12) occurs on the lhs of the
(2K + 2)-th relationship of both subsets (21a) and (21b). Moreover, such subsets
exhibit the following additional features: (i) Every single probability P ij

kk′ on the
lhs of the 2K + 2 relationships in (21a) [(21b)] (leaving aside the distinguished
probability P−−KK) has the counterpart P ji

k′k in the rhs of another relationship of
the same subset (21a) [(21b)]; (ii) The corresponding r-th relationships in (21a)
and (21b), r = 1, 2, . . . , 2K + 2, can be transformed into each other by swapping
the superscripts i ↔ j and the subscripts k ↔ k′ of all the probabilities P ij

kk′

entering the given r-th relationships. With all these ingredients at hand, it is not
difficult to see that, on summing all 4(K+1) relationships in (21a) and (21b), and
simplifying, we end up with relation (12).

3 Concluding Remarks

As pointed out in Sec. 1, the quantum mechanical predictions should satisfy re-
lation (8), since it is a consequence of the NS principle. Next we confirm that,
indeed, the joint probabilities predicted by quantum mechanics for Hardy’s ladder
scenario satisfy the equivalent relation (12).

Consider two qubits A and B in the generic pure entangled state

|Ψ〉 =
x√

1 + x2
|+〉A|+〉B −

1√
1 + x2

|−〉A|−〉B , (22)

where {|+〉A, |−〉A} ({|+〉B , |−〉B}) is an arbitrary orthonormal basis in the state
space of qubit A (B), and 0 ≤ x ≤ 1. Note that x = 0 (x = 1) corresponds to the
product (maximally entangled) state. For the state (22) and for an optimal choice
of observables, the quantum prediction (subject to the fulfillment of conditions
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(2)-(4)) for the various joint probabilities in relation (12) is [3,4,19]

PQM(A0 = −1, B0 = −1) =
(1− x)2

1 + x2
,

PQM(AK = −1, BK = −1) =
1

1 + x2

(
1− x2K+2

1 + x2K+1

)2

,

PQM(AK = +1, BK = +1) =
x2

1 + x2

(
1− x2K

1 + x2K+1

)2

,

and, for k = 1, 2, . . . ,K,

PQM(Ak = −1, Bk−1 = +1) = PQM(Ak−1 = +1, Bk = −1)

=
(1− x2)2

x(1 + x2)

x2k

(1 + x2k−1)(1 + x2k+1)
.

Substituting these expressions into relation (12) and simplifying it, eventually
yields the identity

K∑
k=1

x2k

(1 + x2k−1)(1 + x2k+1)
=

x2(x2K − 1)

(1 + x)(x2 − 1)(1 + x2K+1)
,

which can be easily proved by mathematical induction on k. It is worth noting
that, by using the auxiliary identity x2K − 1 = (x2 − 1)

∑K−1
j=0 x2j , the above

identity can be rewritten as

K∑
k=1

x2k

(1 + x2k−1)(1 + x2k+1)
=

1

(1 + x)(1 + x2K+1)

K∑
k=1

x2k,

which holds for any real number x. Half joking, all in earnest, one could say that
previous identity is a nice gift from the NS principle.

On the other hand, it is important to note that, by adding the following two
chained CH-type inequalities

P (AK = +1, BK = +1)− P (A0 = +1, B0 = +1)

−
K∑

k=1

[
P (Ak = +1, Bk−1 = −1) + P (Ak−1 = −1, Bk = +1)

] LR
≤ 0, (23a)

and

P (AK = −1, BK = −1)− P (A0 = −1, B0 = −1)

−
K∑

k=1

[
P (Ak = −1, Bk−1 = +1) + P (Ak−1 = +1, Bk = −1)

] LR
≤ 0, (23b)

we obtain the inequality

P+(AK , BK)− P+(A0, B0)−
K∑

k=1

[
P−(Ak, Bk−1) + P−(Ak−1, Bk)

] LR
≤ 0,
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which, in turn, can be readily converted into the chained CHSH-type inequality

CHSHK

LR
≤ 2K, and vice versa. Notice that the amount of violation of both CH

inequalities (23a) and (23b) when the Hardy conditions (1)-(4) are fulfilled is
PK ≤ 0. (For the inequality (23b), this follows at once from relation (12).)

Consider now the sum of probabilities on the lhs of inequality (23a)

CHK ≡ PK − P (A0 = +1, B0 = +1)

−
K∑

k=1

[
P (Ak = +1, Bk−1 = −1) + P (Ak−1 = −1, Bk = +1)

]
,

where we assume that the various probabilities P (Ak = i, Bk′ = j) satisfy the NS
conditions (10) and (11) (apart from the usual non-negativity and normalization
constraints), but are otherwise arbitrary. Then, by applying a procedure similar
to that used in Sec. 2 to prove relation (8), it can be shown that

CHSHK = 2K + 4CHK , K = 1, 2, 3, . . . . (24)

From the Tsirelson bound (6), we therefore deduce that

CHK

QM

≤ LK , (25)

where LK is the upper limit in Eq. (9). In particular, for K = 1, we retrieve the

well-known quantum mechanical bound CH1

QM

≤ 1
2 (
√

2− 1) [24]. Evidently, when
the Hardy conditions (2)-(4) are satisfied, the relations (24) and (25) reduce to
relations (8) and (9), respectively.

Lastly, it is to be mentioned that Ahanj et al. [25] (see also Ref. [13]) derived an
upper bound on the Hardy fraction, for K = 1, by applying a sufficient condition
for violating the principle of information causality [26] (IC).4 Under this condition,
they found an upper bound given by P1 ≤ 1

2 (
√

2 − 1). Note that this bound is
the same as the resulting upper limit in Eq. (9) for K = 1. This coincidence,
however, is not accidental. Indeed, the link between the two approaches becomes
clear upon considering the following two facts: (i) All NS correlations which violate
the Tsirelson bound 2

√
2 also violate IC [26,27]; (ii) By relation (8), we have that

CHSH1 > 2
√

2 whenever P1 >
1
2 (
√

2−1) [13]. We thus conclude that the set of NS

correlations fulfilling all the Hardy conditions (1)-(4) with 1
2 (
√

2− 1) < P1 ≤ 0.5,
violate IC.
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Information causality as a physical principle, Nature (London) 461, 1101–1104 (2009)

27. Allcock, J., Brunner, N., Paw lowski, M., Scarani, V.: Recovering part of the quantum
boundary from information causality. Phys. Rev. A 80, 040103 (2009)


	1 Introduction
	2 Chained CHSH Inequality for Hardy's Ladder Test of Nonlocality
	3 Concluding Remarks

