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Abstract

We present a construction of new bound entangled states from given bound entan-
gled states for arbitrary dimensional bipartite systems. One way to construct bound
entangled states is to show that these states are PPT (positive partial transpose) and
violate the range criterion at the same time. By applying certain operators to given
bound entangled states or to one of the subsystems of the given bound entangled states,
we obtain a set of new states which are both PPT and violate the range criterion. We
show that the derived bound entangled states are not local unitary equivalent to the
original bound entangled states by detail examples.
Key words: Bound entanglement, Positive partial transpose , Range criterion, Local
unitary equivalent

1 Introduction

Quantum entanglement has played an important role in quantum information processing
such as quantum teleportation [1], quantum cryptography [2], quantum dense coding [3],
and parallel computing [4]. Among quantum entangled states, one special type of entangled
ones is the bound entangled states. Even though no pure entanglement can be distilled from
bound entangled states they constitute a useful resource in quantum information protocols.
They can be helpful for quantum communication via activation [5, 6]. It was also shown that
some bound entangled states can be useful in enhancing teleportation power [7], distilling
secure quantum keys [8] and reducing communication complexity [9].

As bound entangled states show different characters of entanglement from that of distill-
able quantum states, it is of significance to study the structure and learn the characterization
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of these states. Considerable efforts have been made to the construction of bound entangled
states. Such constructions provide a deep insight into the structure of entangled states.
Meanwhile, many useful tools are introduced in identifying bound entanglement. The first
example of bound entanglement was given by Horodecki [10]. Bound entangled states are
also constructed based on unextendible product bases (UPB) [11] and mutually unbiased
bases (MUB) [12, 13]. A systematic method to construct high-dimensional bound entangled
states was presented in Ref. [14]. High-dimensional bipartite and multipartite bound entan-
gled states are studied in Ref. [15, 16, 17, 19]. Although many bound entangled states have
been found, the physical character and mathematical structure of bound entangled states
are still not well understood.

In this paper, we propose a construction of bound entangled states in any bipartite
systems. By using actions on a given bound entangled states or on one of the subsystems
of these states, a series of bound entangled states can be constructed, which are not local
unitary equivalent to the given bound entangled states. The paper is organized as follows:
In Section 2, we demonstrate that the states obtained by applying the operators on the given
states are PPT and violate the range criterion. Examples of bound entangled states are given.
In Section 3, we show that the states can be bound entangled by applying the operators to
one of the subsystems of given bound entangled states. We present some detailed examples
of this construction. Conclusions and discussions are given in Section 4.

2 Construction via operators acting on density matrix

Let H be an N -dimensional complex Hilbert space with an orthonormal basis |i〉, i =
1, · · · , N . Let ρ be a density matrix defined on H ⊗H with rank(ρ)=n ≤ N2. Then ρ can
be written as

ρ =
n∑

i=1

λi|νi〉〈νi|,

where |νi〉 and λi are the eigenvectors and eigenvalues, respectively. |νi〉 is a normalized
bipartite pure state of the form

|νi〉 = (a1i, · · · , aN2i)
t,

where t stands for transposition. Let Pmn be the permutation operator that swaps the mth
and nth systems, i.e.

Pmn|1, 2, · · · , m, · · · , n, · · · , N〉 = |1, 2, · · · , n, · · · , m, · · · , N〉.

Let Qi(c)Pmn be the matrix obtained by multiplying the ith row or column of Pmn by c,
where c 6= 0, 1, c ∈ R is a real number.
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Theorem 1. Suppose that the state ρ is PPT and not satisfying the range criterion.
Then for any Q = Qi(c)Pmn, c 6= 0, 1 ∈ R and i 6= m, n, the state ρ′ = (I ⊗Q)ρ(I ⊗Q)† is
also bound entangled.

Proof: Since (I ⊗Q)T2 = I ⊗Q, (I ⊗Q)† = (I ⊗Q)t and the congruent transformation
dose not change positive semi-definiteness of the matrix, ρ′T2 is positive semi-definite, where
T2 denotes the transposition with respect to the second system. Hence ρ′ is PPT. Any vector
µ in the range of ρ is a vector of the form

µ = (B11, · · · , B1N , · · · , BN1, · · · , BNN)
t,

where Bij ∈ C. As ρ′ = (I ⊗ Q)ρ(I ⊗ Q)†, we see that the corresponding vector µ′ in the
range of ρ′ is given by

µ′ = (B1′1′ , · · · , cB1′i′ , · · · , B1′N ′, · · · , BN ′1′, · · · , BN ′N ′)t,

where Pmn(i) = i′.

Since the state ρ violates the range criterion, there exist a basis {µ1, · · · , µq} of range(ρ)
such that their partial complex conjugations with respect to the second system do not span
range(ρT2). That is, there is a vector µ0 belonging to the range of ρ which is linearly
independent from the vectors spanning the range of ρT2 . Since I ⊗ Q is reversible, the
vectors (I⊗Q)µ1, · · · , (I⊗Q)µq span the range of ρ′, and the vector (I⊗Q)µ0 belonging to
the range of ρ′T2 is also linearly independent from the partial complex conjugated vectors.
Hence the state ρ′ is bound entangled.

Remark 1. According to Ref. [20], two density matrices are equivalent under local
unitary transformations if there exists an ordering of the corresponding eigenstates such
that the following invariants have the same values for both density matrices:

Js(ρ) = Tr(ρs), Ω̃(ρ), θ̃(ρ), X̃(ρ), Ỹ (ρ),

where i, j, k, s = 1, · · · , N2, with entries give by Ω̃(ρ)ij = Tr(ρiρj), θ̃(ρ)ij = Tr(θiθj),

X̃(ρ)ijk = Tr(ρiρjρk), Ỹ (ρ)ijk = Tr(θiθjθk), where ρi = Tr2|vi〉〈vi|, θi = Tr1|vi〉〈vi|. There-
fore if any of the above invariants are not equal for two density matrices, then they are
not equivalent under local unitary transformations. By choosing appropriate operators Q
one sees that the bound entangled states constructed in Theorem 1 are not local unitary
equivalent to the original bound entangled states.

Remark 2. If dimH1 6= dimH2, by using the same approach one can also get similar
results for bipartite states in H1 ⊗H2.

Remark 3. Instead of the operator Q in the Theorem 1, if one uses Q = Qk(c)
∏
ij

Pij,

k 6= i 6= j, where
∏
ij

denotes the product of a finite number matrices Pij, similar results can

be obtained.
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Next we will give some examples.

Example 1. The spectral decomposition of the state ρ [19] in 3 ⊗ 3 systems can be
expressed as,

ρ =
(1− ε)

3
(|f1〉〈f1|+ |f2〉〈f2|+ |f3〉〈f3|) +

ε

2
(|f4〉〈f4|+ |f5〉〈f5|), (1)

where 0 < ε ≤ 2
5
,

|f1〉 = (1, 0, 0, 0, 0, 0, 0, 0, 0)t,

|f2〉 = (0, 0, 0, 0, 1, 0, 0, 0, 0)t,

|f3〉 = (0, 0, 0, 0, 0, 0, 0, 0, 1)t,

|f4〉 = (0,
1√
2
, 0,− 1√

2
, 0, 0, 0, 0, 0)t,

|f5〉 = (0, 0,
1√
2
, 0, 0, 0,− 1√

2
, 0, 0)t.

Let Q = Q3(c)P12, then ρ
′ = (I ⊗Q)ρ(I ⊗Q)† is bound entangled.

According to [19], the state ρ is PPT and violates the range criterion. From Theorem 1
ρ′ is PPT too. Any vector of range(ρ) can be represented as

µ = (A,B,C,−B,D, 0,−C, 0, E)t,

where A,B,C,D,E ∈ C. Any vector of range(ρ′) can be expressed as

µ′ = (B,A,C,D,−B, 0, 0,−C,E)t.

According to [19], vectors µ1 = (a1, 0, 0)
t ⊗ (b1, 0, 0)

t, µ2 = (0, a2, 0)
t ⊗ (0, b2, 0)

t, µ3 =
(0, 0, a3)

t ⊗ (0, 0, b3)
t, µ4 = (a1, 0, a3)

t ⊗ (b1, 0, b3)
t, µ5 = (a1, a2, 0)

t ⊗ (b1, b2, 0)
t span the

range of ρ, while their partial complex conjugations on the second system do not span the
range of ρT2 , as the vector µ0 = (1, 0, 0)⊗ (0, 1, 0)t of range(ρT2) is linearly independent from
any basis vectors of range(ρ). For ρ′ we can also get that the partial complex conjugations
with respect to the second system of the following vectors do not span the range of ρ′T2 ,
since the vector (I ⊗Q)µ0 = (1, 0, 0)t ⊗ (1, 0, 0)t of range(ρ′T2) is linearly independent from
these vectors,

(I ⊗Q)µ1 = (a1, 0, 0)
t ⊗ (0, b1, 0)

t,

(I ⊗Q)µ2 = (0, a2, 0)
t ⊗ (b2, 0, 0)

t,

(I ⊗Q)µ3 = (0, 0, a3)
t ⊗ (0, 0, cb3)

t,

(I ⊗Q)µ4 = (a1, 0, a3)
t ⊗ (0, b1, cb3)

t,

(I ⊗Q)µ5 = (a1, a2, 0)
t ⊗ (b2, b1, 0)

t.

Hence ρ′ is bound entangled either. Since the invariants θ(ρ)3,3 = 1, θ(ρ′)3,3 = c4, i.e.
θ(ρ) 6= θ(ρ′), ρ and ρ′ are not local unitary equivalent.
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Example 2. The spectral decomposition of the state ρ in 2 ⊗ 8 systems [21] has the
form,

ρ =
(1− ε)

4

4∑

i=1

|ηi〉〈ηi|+
ε

4

8∑

i=5

|ηi〉〈ηi|, 0 < ε ≤ 1

2
, (2)

where

|η1〉 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)t,

|η2〉 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)t,

|η3〉 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)t,

|η4〉 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)t,

|η5〉 = (0,
1√
2
, 0, 0,− 1√

2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)t,

|η6〉 = (0, 0,
1√
2
, 0, 0, 0, 0, 0,− 1√

2
, 0, 0, 0, 0, 0, 0, 0)t,

|η7〉 = (0, 0, 0, 0, 0, 0, 0,
1√
2
, 0, 0, 0, 0, 0,− 1√

2
, 0, 0)t,

|η8〉 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1√
2
, 0, 0,− 1√

2
, 0)t.

Firstly we prove that the state ρ is PPT and violates the range criterion. ρT2 is a nonzero
Hermitian row diagonally matrix when 0 < ε ≤ 1

2
, thus ρT2 is positive semidefinite. Any

vector of range(ρ) can be written as

µ = (A,B,C, 0,−B,D, 0, E,−C, 0, F, G, 0,−E,−G,H)t,

where A,B,C,D,E, F,G,H ∈ C. If ρ is separable,

µsep = (b1, b2)
t ⊗ (c1, · · · , c8)t.

Thus we see that the following vectors span range(ρ)

µ1 = (b1, b2)
t ⊗ (c1, 0, c3, 0, 0, c6, 0, c8)

t,

µ2 = (b1, 0)
t ⊗ (c1, c2, 0, 0, c5, c6, 0, 0)

t,

µ3 = (0, b2)
t ⊗ (0, 0, c3, c4, 0, 0, c7, c8)

t.

Since the vector µ0 = (1, 0)t ⊗ (0, 0, 1, 0, 0, 0, 0, 0)t ∈ ρT2 is linearly independent from the
vectors µ∗2

1 , µ
∗2
2 , µ

∗2
3 , ρ is entangled. Therefore, ρ is bound entangled.

Let Q = Q3(c)P12P78. Then ρ
′ = (I ⊗Q)ρ(I ⊗Q)†. It follows from Theorem 1 that ρ′ is

PPT. Any vector of range(ρ′) is of the following form

µ = (B,A, cC, 0,−B,D,E, 0, 0,−C, F,G, 0,−E,H,−G)t.

5



We get that

(I ⊗Q)µ1 = (b1, b2)
t ⊗ (0, c1, cc3, 0, 0, c6, c8, 0)

t,

(I ⊗Q)µ2 = (b1, 0)
t ⊗ (c2, c1, 0, 0, c5, c6, 0, 0)

t,

(I ⊗Q)µ3 = (0, b2)
t ⊗ (0, 0, cc3, c4, 0, 0, c8, c7)

t,

(I ⊗Q)µ0 = (1, 0)t ⊗ (0, 0, c, 0, 0, 0, 0, 0)t.

So ρ′ is also bound entangled. Since θ(ρ)6,7 = 0, θ(ρ′)6,7 =
1
4
+ 1

4
c2, then θ(ρ) 6= θ(ρ′), and ρ

and ρ′ are not local unitary equivalent.

In [19], we have presented a class of bound entangled states in 3k⊗3k quantum systems.
Using Theorem 1, we can construct new bound entangled states from these 3k ⊗ 3k bound
entangled states.

Example 3. The spectral decomposition of the bound entangled state ρ [19] in 3k⊗ 3k
quantum systems is written as follows:

ρ =
ε

2

2∑

i=1

|χi〉〈χi|+
(1− ε)

7k2 − 4k

7k2−4k+2∑

i=3

|χi〉〈χi|, 0 < ε ≤ 2

7k − 2
,

where |χ1〉 = |φ1〉 and |χ2〉 = |φ2〉 are the linearly independent eigenvectors corresponding
to the eigenvalue ε

2
, with |φ1〉 = (0, b, 0, 0, · · · , 0,−b, 0, 0, 0, · · · , 0,

0, b, 0, 0, · · · , 0,−b, 0, 0, 0, · · · , 0)t, |φ2〉 = (0, 0, b, 0, · · · , 0, 0, · · · , 0,−b, 0, 0, 0, · · · ,
0, 0, 0, b, 0 · · · , 0, 0, · · · , 0,−b, 0, 0)t, |b|2 = 1

2k
. |χi〉, i = 3, · · · , 7k2 − 4k + 2, are the linearly

independent eigenvectors of L3k with eigenvalue of 1−ε
7k2−4k

, where L3k is a 9k2 × 9k2 matrix
having the following nonzero entries:

(L3k)(m−1)×3k+m,(m−1)×3k+m = 1
7k2−4k

, m = 1, 2, · · · , 3k.

(L3k)(3m−l)×3k+3n−l′,(3m−l)×3k+3n−l′ =
1

7k2−4k
, m, n = 1, 2, · · · , k, m 6= n. l′ =






0, 2 , l = 1.
1, 2 , l = 2.
0, 1, 2 , l = 3.

Take Q = P3(c)P12. We claim that the state ρ′ = (I⊗Q)ρ(I⊗Q)† is bound entangled. In
fact, since ρ is PPT, ρ′ is also PPT. By [18], the following vectors form a basis of the range
of ρ:

|ψ3m−2,3m−2〉 = (0, · · · , 0, a3m−2, 0, · · · , 0)t ⊗ (0, · · · , 0, b3m−2, 0, · · · , 0)t,
|ψ3m−2,3n−2〉 = (0, · · · , 0, a3m−2, 0, · · · , 0)t ⊗ (0, · · · , 0, b3n−2, 0, · · · , 0)t,
|ψ3m−2,3n−1〉 = (0, · · · , 0, a3m−2, 0, · · · , 0)t ⊗ (0, · · · , 0, b3n−1, 0, · · · , 0)t,
|ψ3m−2,3n〉 = (0, · · · , 0, a3m−2, 0, · · · , 0)t ⊗ (0, · · · , 0, b3n, 0, · · · , 0)t,
|ψ3m−1,3m−1〉 = (0, · · · , 0, a3m−1, 0, · · · , 0)t ⊗ (0, · · · , 0, b3m−1, 0, · · · , 0)t,
|ψ3m−1,3n−2〉 = (0, · · · , 0, a3m−1, 0, · · · , 0)t ⊗ (0, · · · , 0, b3n−2, 0, · · · , 0)t,
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|ψ3m−1,3n−1〉 = (0, · · · , 0, a3m−1, 0, · · · , 0)t ⊗ (0, · · · , 0, b3n−1, 0, · · · , 0)t,
|ψ3m,3m〉 = (0, · · · , 0, a3m, 0, · · · , 0)t ⊗ (0, · · · , 0, b3m, 0, · · · , 0)t,
|ψ3m,3n−2〉 = (0, · · · , 0, a3m, 0, · · · , 0)t ⊗ (0, · · · , 0, b3n−2, 0, · · · , 0)t,
|ψ3m,3n〉 = (0, · · · , 0, a3m, 0, · · · , 0)t ⊗ (0, · · · , 0, b3n, 0, · · · , 0)t,
|ψk〉 = (a1, 0, a3, · · · , a3k−2, 0, a3k)

t ⊗ (b1, 0, b3, · · · , b3k−2, 0, b3k)
t,

|ψkk〉 = (a1, a2, 0, · · · , a3k−2, a3k−1, 0)
t ⊗ (b1, b2, 0, · · · , b3k−2, b3k−1, 0)

t,

where m,n = 1, · · · , k, n 6= m, a1, · · · , a3k, b1, · · · , b3k ∈ C. The vector |ψ0〉 = (1, 0, · · · , 0)t⊗
(0, 1, 0, · · · , 0)t of range(ρT2) is also linearly independent from the vectors obtained by taking
partial complex conjugation on the above vectors.

According to Theorem 1 we know that the vectors (I⊗Q)|ψ3m−2,3m−2〉, (I⊗Q)|ψ3m−2,3n−2〉,
(I ⊗ Q)|ψ3m−2,3n−1〉, (I ⊗ Q)|ψ3m−2,3n〉, (I ⊗ Q)|ψ3m−1,3m−1〉, (I ⊗ Q)|ψ3m−1,3n−2〉, (I ⊗
Q)|ψ3m−1,3n−1〉, (I⊗Q)|ψ3m,3m〉, (I⊗Q)|ψ3m,3n−2〉, (I⊗Q)|ψ3m,3n〉, (I⊗Q)|ψk〉, (I⊗Q)|ψkk〉
span the range of ρ′. Performing the partial complex conjugations with respect to the second
system, we get that the resulting vectors do not span the range of ρ′T2 , since the range vec-
tor (I ⊗Q)|ψ0〉 of ρ′T2 is linearly independent from the resulting vectors. Hence ρ′ is bound
entangled. Moreover, since θ(ρ)2,2 = 1

2k
, θ(ρ′)2,2 = 1

2k
+ (c4 − 1) 1

4k2
, hence θ(ρ) 6= θ(ρ′).

Therefore, ρ and ρ′ are not local unitary equivalent.

3 Construction by action on bases of the density ma-

trices

In this section, we consider construction of bound entangled states based on changing
bases of the density matrices. We restrict ourselves to permutation operators invariant under
T2 and set P (1) = {Pmn ∈ P | P T2

mn = Pmn}.
Let σ =

∑n

i=1 λi|νi〉〈νi| be a density matrix under spectral decomposition. Suppose
there is a permutation operator Pmn ∈ P (1) leaving all eigenvectors |νj〉 invariant except for
possibly |νi〉. That is, the components amj of |νj〉 satisfy amj = anj for all j = 1, · · · , i −
1, i+ 1, · · · , n. Then we have the following theorem.

Theorem 2. If the density matrix σ constructed as above is PPT and dose not satisfy
the range criterion, then

σ′ =
∑

j 6=i

λj |νj〉〈νj|+ λiPmn|νi〉〈νi|P †
mn

is bound entangled.

Proof: By assumption, σ′ = PmnσP
†
mn = PmnσPmn. Since P

T2

mn = Pmn and σT2 is positive

7



semi-definite, σ′T2 = Pmnσ
T2Pmn is positive semi-definite. Hence σ′ is PPT.

Any vector µ of range(σ) can be written as

µ = (A11, · · · , A1N , · · · , AN1, · · · , ANN)
t.

Under the action of Pmn, the corresponding vector µ′ in range(σ′) becomes

µ′ = (A1′1′, · · · , A1′N ′ , · · · , AN ′1′ , · · · , AN ′N ′)t,

where Pmn(i) = i′. Suppose that the vectors µ1, µ2, · · · , µq span the range of σ, but their
partial complex conjugations with respect to the second system do not span the range of
σT2 . That is, there is a vector µ0 of range(σT2) which is linearly independent from these
conjugated vectors. Since Pmn is reversible, there are vectors Pmnµ1, · · · , Pmnµl, l ≤ q, span
the range of σ′, and the vector Pmnµ0 of range(σ′T2) is also linearly independent from these
spanning vectors under partial complex conjugation on the second system. Thus the state
σ′ is bound entangled.

Remark 4. If dimH1 6= dimH2, the similar result still holds for states in H1 ⊗H2.

Remark 5. According to [20], by using the local unitary invariants Ω̃(σ), θ̃(σ), X̃(σ),

Ỹ (σ), together with the condition Js(σ) = Tr(σs), s = 1, · · · , N2, one can verify that, by
choosing appropriate operators, the derived states are not local unitary equivalent to the
original states.

Example 4: Consider the state Eq.(1) in Example 1. Let P46 act on the eigenvector
|f4〉. We have

σ′ = P46ρP
†
46 =

(1− ε)

3
(|f1〉〈f1|+ |f2〉〈f2|+ |f3〉〈f3|)+

ε

2
(P46|f4〉〈f4|P †

46 + |f5〉〈f5|), 0 < ε ≤ 2

5
.

Obviously σ′ is PPT. Vectors µ1 = (a1, 0, 0)
t ⊗ (b1, 0, 0)

t, µ2 = (0, a2, 0)
t ⊗ (0, b2, 0)

t, µ3 =
(0, 0, a3)

t⊗(0, 0, b3)
t, µ4 = (a1, 0, a3)

t⊗(b1, 0, b3)
t, µ5 = (a1, a2, 0)

t⊗(b1, b2, 0)
t span the range

of ρ. However, the partial complex conjugations of these vectors do not span the range of ρT2 ,
as the vector µ0 = (1, 0, 0)⊗ (0, 1, 0)t is linearly independent from these vectors. According
to Theorem 2, we can get

P46µ1 = (a1, 0, 0)
t ⊗ (b1, 0, 0)

t,

P46µ2 = (0, a2, 0)
t ⊗ (0, b2, 0)

t,

P46µ3 = (0, 0, a3)
t ⊗ (0, 0, b3)

t,

P46µ4 = (a1, 0, a3)
t ⊗ (b1, 0, b3)

t.

The vector P46µ0 = (1, 0, 0)t ⊗ (0, 1, 0)t belonging to the range of σ′T2 is linearly inde-
pendent from the above vectors under partial complex conjugation on the second system.
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Hence σ′ is also bound entangled. Since θ(ρ)3,4 = 0, θ(σ′)3,4 =
1
2
, i.e. θ(ρ) 6= θ(σ′), ρ and σ′

are not local unitary equivalent.

Example 5: Consider the state Eq.(2) in Example 2. Let P24 act on the eigenvector
|η5〉. Then the new state

σ′ = P24ρP
†
24 =

(1− ε)

4

4∑

i=1

|ηi〉〈ηi|+
ε

4
(P24|η5〉〈η5|P †

24 +

8∑

i=6

|ηi〉〈ηi|), 0 < ε ≤ 1

2
,

is bound entangled. Namely, σ′ is also PPT. Moreover,

P24µ1 = (b1, b2)
t ⊗ (c1, 0, c3, 0, 0, c6, 0, c8)

t,

P24µ2 = (b1, 0)
t ⊗ (c1, 0, 0, c2, c5, c6, 0, 0)

t,

P24µ3 = (0, b2)
t ⊗ (0, 0, c3, c4, 0, 0, c7, c8)

t.

The vector P24µ0 = (1, 0)t ⊗ (0, 0, 1, 0, 0, 0, 0, 0)t of range(σ′T2) is linearly independent from
the above vectors under partial complex conjugation on the second system. Therefore σ′ is
also bound entangled. Since θ(ρ)4,5 = 0, θ(σ′)4,5 =

1
2
, then θ(ρ) 6= θ(σ′). Thus ρ and σ′ are

not local unitary equivalent.

Example 6: Consider the bound entangled states ρ defined in Example 3. Let operator
P(3k+1)(3k+3) act on the eigenvector |χ1〉. Then the following state is also bound entangled,

σ′ =
ε

2
(P(3k+1)(3k+3)|χ1〉〈χ1|P †

(3k+1)(3k+3) + |χ2〉〈χ2|)

+
(1− ε)

7k2 − 4k

7k2−4k+2∑

i=3

|χi〉〈χi|, 0 < ε ≤ 2

7k − 2
.

This can be seen as follows. Since σ′ = P(3k+1)(3k+3)ρP
†

(3k+1)(3k+3), σ
′ is PPT. According

to Theorem 2, we have that the vectors P(3k+1)(3k+3)|ψ3m−2,3m−2〉, P(3k+1)(3k+3)|ψ3m−2,3n−2〉,
P(3k+1)(3k+3)|ψ3m−2,3n−1〉, P(3k+1)(3k+3)|ψ3m−2,3n〉, P(3k+1)(3k+3)|ψ3m−1,3m−1〉, P(3k+1)(3k+3)|ψ3m−1,3n−1〉,
P(3k+1)(3k+3)|ψ3m,3m〉, P(3k+1)(3k+3)|ψ3m−1,3n−2〉, P(3k+1)(3k+3)|ψ3m,3n−2〉, P(3k+1)(3k+3)|ψ3m,3n〉,
P(3k+1)(3k+3)|ψk〉 span the range of σ′. However, the vector P(3k+1)(3k+3)|ψ0〉 of range(σ′T2) is
still linearly independent from the above vectors under partial complex conjugation on the
second system. Thus σ′ is bound entangled. Since θ(ρ)1,3 =

1
2k
, θ(σ′)1,3 = 0, i.e. θ(ρ) 6= θ(σ′),

ρ and σ′ are not local unitary equivalent.

4 Conclusion and Discussion

We have presented a new construction of bound entangled states from given bound en-
tangled states. The key operation is based on suitable action on the given bound entangled
states. We have also generalized the method to allow action on the subsystems of the given
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states. The approach gives rise to a series of bound entangled states from a given entangled
one. Moreover, by choosing appropriate operators, the derived bound entangled states are
shown to be local unitary inequivalent to the original bound entangled states.
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