Skip to main content
Log in

Entanglement-assisted operator codeword stabilized quantum codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we introduce a unified framework to construct entanglement-assisted quantum error-correcting codes (QECCs), including additive and nonadditive codes, based on the codeword stabilized (CWS) framework on subsystems. The CWS framework is a scheme to construct QECCs, including both additive and nonadditive codes, and gives a method to construct a QECC from a classical error-correcting code in standard form. Entangled pairs of qubits (ebits) can be used to improve capacity of quantum error correction. In addition, it gives a method to overcome the dual-containing constraint. Operator quantum error correction (OQEC) gives a general framework to construct QECCs. We construct OQEC codes with ebits based on the CWS framework. This new scheme, entanglement-assisted operator codeword stabilized (EAOCWS) quantum codes, is the most general framework we know of to construct both additive and nonadditive codes from classical error-correcting codes. We describe the formalism of our scheme, demonstrate the construction with examples, and give several EAOCWS codes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bacon, D.: Operator quantum error-correcting subsystems for self-correcting quantum memories. Phys. Rev. A 73(1), 012,340 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bowen, G.: Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 66(5), 052,313 (2002)

    Article  MathSciNet  Google Scholar 

  3. Brun, T.A., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Calderbank, A., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996)

    Article  ADS  Google Scholar 

  5. Cross, A., Smith, G., Smolin, J.A., Zeng, B.: Codeword stabilized quantum codes. IEEE Trans. Inf. Theory 55(1), 433–438 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, Caltech Ph.D. dissertation, Psadena, CA (1997)

  7. Hsieh, M.H., Devetak, I., Brun, T.A.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76(6), 062,313 (2007)

    Article  Google Scholar 

  8. Kribs, D., Laflamme, R., Poulin, D.: Unified and generalized approach to quantum error correction. Phys. Rev. Lett 94(18), 180,501 (2005)

    Article  Google Scholar 

  9. Lai, C.Y., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Arxiv preprint arXiv:1008.2598 (2010)

  10. Poulin, D.: Stabilizer formalism for operator quantum error correction. Phys. Rev. Lett. 95(23), 230,504 (2005)

    Article  Google Scholar 

  11. Shin, J., Heo, J., Brun, T.A.: Entanglement-assisted codeword stabilized quantum codes. Phys. Rev. A 84, 062,321 (2011)

    Article  Google Scholar 

  12. Shin, J., Heo, J., Brun, T.A.: Codeword-stabilized quantum codes on subsystems. Phys. Rev. A 86, 042,318 (2012)

    Article  Google Scholar 

  13. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  14. Steane, A.M.: Error Correcting Codes in Quantum Theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Van den Nest, M., Dehaene, J., De Moor, B.: Graphical description of the action of local Clifford transformations on graph states. Phys. Rev. A 69(2), 022,316 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

TAB would like to thank Ching-Yi Lai and Mark Wilde for useful conversations. TAB acknowledges financial support from NSF Grant CCF-0830801. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2011959). This research was supported by the Ministry of Science, ICT and Future Planning (MSIP), Korea, under the Information Technology Research Center (ITRC) support program (IITP-2015-R0992-15-1017) supervised by the Institute for Information & communications Technology Promotion (IITP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Heo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J., Heo, J. & Brun, T.A. Entanglement-assisted operator codeword stabilized quantum codes. Quantum Inf Process 15, 1921–1936 (2016). https://doi.org/10.1007/s11128-015-1235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1235-2

Keywords

Navigation