Skip to main content
Log in

General tracking control of arbitrary N-level quantum systems using piecewise time-independent potentials

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Here we propose a tracking quantum control protocol for arbitrary N-level systems. The goal is to make the expected value of an observable \({\mathcal O}\) to follow a predetermined trajectory S(t). For so, we drive the quantum state \(|\varPsi (t) \rangle \) evolution through an external potential V which depends on \(M_V\) tunable parameters (e.g., the amplitude and phase (thus \(M_V = 2\)) of a laser field in the dipolar condition). At instants \(t_n\), these parameters can be rapidly switched to specific values and then kept constant during time intervals \(\Delta t\). The method determines which sets of parameters values can result in \(\langle \varPsi (t) | {\mathcal O} |\varPsi (t) \rangle = S(t)\). It is numerically robust (no intrinsic divergences) and relatively fast since we need to solve only nonlinear algebraic (instead of a system of coupled nonlinear differential) equations to obtain the parameters at the successive \(\Delta t\)’s. For a given S(t), the required minimum \(M_V = M_{\min }\) ‘degrees of freedom’ of V attaining the control is a good figure of merit of the problem difficulty. For instance, the control cannot be unconditionally realizable if \(M_{\min } > 2\) and V is due to a laser field (the usual context in real applications). As it is discussed and exemplified, in these cases a possible procedure is to relax the control in certain problematic (but short) time intervals. Finally, when existing the approach can systematically access distinct possible solutions, thereby allowing a relatively simple way to search for the best implementation conditions. Illustrations for 3-, 4-, and 5-level systems and some comparisons with calculations in the literature are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The interval \(\Delta t\) is a compromise between having a fine discretization for S(t) and allowing easy physical conditions for the control. If the field amplitude is not too high, a ‘safe’ (although usually not necessary) choice regarding the latter aspect would be \(\Delta t \sim \hbar / \Delta \varepsilon _{\min }\), with \(\Delta \varepsilon _{\min } = \text{ Min } \, \{ \varepsilon _{n+1} - \varepsilon _{n} \}\).

  2. This package, developed by B. Hasselman, is available in the R free software environment. For details, see http://cran.r-project.org/web/packages/nleqslv/nleqslv.

  3. For so, we should know analytically the general relation \(U_{i j} = f(i,j; \{H_{n m}\})\) for H a \(N \times N\) Hermetian matrix and \(U = \exp [- i H]\).

  4. There is a \(\psi \) solving \(U \psi = \phi \) only if the given \(\phi \) can be written as a linear combination of the rows of U.

  5. Here, of course, we disregard conflicting states, like \(\tilde{C}^{({\varepsilon })}\) and \(C^{({\varepsilon })}\) orthogonal.

References

  1. Brif, C., Chakrabarti, R., Rabitz, H.: Control of quantum phenomena: past, preent and future. New J. Phys. 12, 075008 (2010)

    Article  ADS  Google Scholar 

  2. Gough, J. (ed.): Special issue: Principle and Applications of Quantum Control Engineering. Philos. Trans. R. Soc. A 370(1979) (2012)

  3. Rabitz, H., de Vivie-Riedle, R., Motzkus, M., Kompa, K.: Wither the future of controling quantum phenomena? Science 288, 824–828 (2000)

    Article  ADS  Google Scholar 

  4. Shapiro, M., Brumer, P.: Principles of the Quantum Control of Molecular Processes. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  5. Gerbasi, D., Scholes, G.D., Brumer, P.: Coherent control in semiconductor quantum dots: reduced optimal gain thresholds via biexciton control. Phys. Rev. B 82, 125321 (2010)

    Article  ADS  Google Scholar 

  6. Arndt, M., Juffmann, T., Vedral, V.: Quantum physics meets biology. HFSP J. 3, 386–400 (2009)

    Article  Google Scholar 

  7. Cai, J., Guerreschi, G.G., Briegel, H.J.: Quantum control and entanglement in a chemical compass. Phys. Rev. Lett. 104, 220502 (2010)

    Article  ADS  Google Scholar 

  8. Rondi, A., Kiselev, D., Machado, S., Extermann, J., Weber, S., Bonacina, L., Wolf, J., Roslund, J., Roth, M., Rabitz, H.: Discriminating biomolecules with coherent control strategies. Chimia 65, 5 (2011)

    Article  Google Scholar 

  9. Bardeen, C.J., Yakovlev, V.V., Wilson, K.R., Carpenter, S.D., Weber, P.M., Warren, W.S.: Feedback quantum control of molecular electronic population transfer. Chem. Phys. Lett. 280, 151–158 (1997)

    Article  ADS  Google Scholar 

  10. Beltrani, V., Dominy, J., Ho, T., Rabitz, H.: Photonic reagent control of dynamically homologous quantum systems. J. Chem. Phys. 126, 094105 (2007)

    Article  ADS  Google Scholar 

  11. Meshulach, D., Silberberg, Y.: Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature 396, 239–242 (1998)

    Article  ADS  Google Scholar 

  12. Lim, J., Lee, H., Kim, J., Lee, S., Ahn, J.: Coherent transients mimicked by two-photon coherent control of a three-level system. Phys. Rev. A 83, 053429 (2011)

    Article  ADS  Google Scholar 

  13. Bruner, B.D., Suchowski, H., Vitanov, N.V., Silberberg, Y.: Strong-field spatiotemporal ultrafast coherent control in three-level atoms. Phys. Rev. A 81, 063410 (2010)

    Article  ADS  Google Scholar 

  14. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  15. Dong, D., Petersen, I.R.: Quantum control theory and applications: a survey. IET Control Theory Appl. 4, 2651 (2010)

    Article  MathSciNet  Google Scholar 

  16. Altafini, C., Ticozzi, F.: Modeling and control of quantum systems: an introduction. IEEE Trans. Autom. Control 57, 1898 (2012)

    Article  MathSciNet  Google Scholar 

  17. Dong, D., Chen, C., Jiang, M., Wang, L.-C. (eds.): Special issue: Quantum control and quantum information technology. Sci. World J. 2013 (2013)

  18. Keyl, M.: Fundamentals of quantum information theory. Phys. Rep. 369, 431 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Chuang: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  21. Bennet, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247–255 (2000)

    Article  ADS  Google Scholar 

  22. Craig, N.J., Taylor, J.M., Lester, E.A., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Tunable nonlocal spin control in a coupled-quantum dot system. Science 23, 565–567 (2004)

    Article  ADS  Google Scholar 

  23. Pawela, L., Puchala, Z.: Quantum control with spectral constraints. Quantum Inf. Process. 13, 227–237 (2014)

    Article  MATH  Google Scholar 

  24. Zawadzki, P.: An improved control mode for the ping–pong protocol operation in imperfect quantum channels. Quantum Inf. Process. 14, 2589–2598 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Biercuk, M.J., Uys, H., VanDevender, A.P., Shiga, N., Itano, M.W., Bollinger, J.J.: Optimized dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009)

    Article  ADS  Google Scholar 

  26. O’Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Neeley, M., Sank, D., Wang, H., Wenner, J., Martinis, J., Cleland, N.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)

    Article  ADS  Google Scholar 

  27. Reim, K.F., Michelberger, P., Lee, K.C., Nunn, J., Langford, N.K., Walmsley, I.A.: Single-photon-level quantum memory at room temperature. Phys. Rev. Lett. 107, 053603 (2011)

    Article  ADS  Google Scholar 

  28. Guerra, C.A.E., Villamizar, D.V., Rego, L.G.C.: Decoherence effects on quantum control by reverse optimized pulse sequences. Phys. Rev. A 86, 023411 (2012)

    Article  ADS  Google Scholar 

  29. Dong, D., Petersen, I.R.: Quantum control theory and applications: a survey. IET Control Theory Appl. 4, 2651–2671 (2010)

    Article  MathSciNet  Google Scholar 

  30. Viola, L., Tannor, D. (eds.): Special issue: Quantum control theory for coherence and information dynamics. J. Phys. B 44(15) (2011)

  31. Tannor, D.J., Rice, S.A.: Control of selectivity of chemical reaction via control of wave packet evolution. J. Chem. Phys. 83, 5013–5018 (1985)

    Article  ADS  Google Scholar 

  32. Tannor, D.J., Kosloff, R., Rice, S.A.: Coherent pulse sequence induced control of selectivity of reactions: exact quantum mechanical calculations. J. Chem. Phys. 85, 5805–5820 (1986)

    Article  ADS  Google Scholar 

  33. Shapiro, M., Brumer, P.: Laser control of unimolecular decay yields in the presence of collisions. J. Chem. Phys. 90, 6179–6186 (1989)

    Article  ADS  Google Scholar 

  34. Amstrup, B., Carlson, R.J., Matro, A., Rice, S.: The use of pulse shaping to control the photodissociation of a diatomic molecule: preventing the best from being the enemy of the good. J. Chem. Phys. 95, 8019–8027 (1991)

    Article  Google Scholar 

  35. Judson, R.S., Rabitz, H.: Teaching lasers to control molecules. Phys. Rev. Lett. 68(10), 1500–1503 (1992)

    Article  ADS  Google Scholar 

  36. Weiner, A.M.: Femtosecond pulses shaping using spatial light modulators. Rev. Sci. Instrum. 71(5), 1929–1960 (2000)

    Article  ADS  Google Scholar 

  37. Underwood, J.G., Spanner, M., Ivanov, M.J., Mottershead, J., Sussman, B.J., Stolow, A.: Switched wave packets: a route to nonperturbative quantum control. Phys. Rev. Lett. 90, 223001 (2003)

    Article  ADS  Google Scholar 

  38. Bandrauk, A. D., Delfour, M. C., Le Bris, C. (eds.): Quantum Control: Mathematical and Numerical Challenges. CRM Proceedings and Lecture Notes, vol. 33. AMS Publications, Providence, RI (2003)

  39. Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Frenkel, P.E., Weiner, M.: Classical information storage in an \(n\)-level quantum system. Commun. Math. Phys. 340, 563–574 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Jaeger, G.: Quantum Information: An Overview. Springer, New York (2007)

    MATH  Google Scholar 

  42. Matthews, J.C.F.: Multi-photon Quantum Information Science and Technology in Integrated Optics. Springer, Berlin (2013)

    Book  Google Scholar 

  43. Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys. Rev. A 63, 032308 (2001)

    Article  ADS  Google Scholar 

  44. Boscain, U., Charlot, G., Gauthier, J., Guérin, S., Jauslin, R.: Optimal control in laser induced population transfer for two-quantum systems. J. Math. Phys. 43, 2017 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sklarz, S.E., Tannor, D.J., Khaneja, N.: Optimal control of quantum dissipative dynamics: analytic solution for cooling the three-level system. Phys. Rev. A 69, 053408 (2004)

    Article  ADS  Google Scholar 

  46. Pechen, A., II’in, N., Shuang, F., Rabitz, H.: Quantum control by von Neumann measurements. Phys. Rev. A 74, 052102 (2006)

    Article  ADS  Google Scholar 

  47. Zhou, X.-Q., Ralph, T.C., Kalasuwan, P., Zhang, M., Peruzzo, A., Lanyon, B.P., O’Brien, J.L.: Adding control to arbitrary unknown quantum operations. Nat. Commun. 2, 413 (2011)

    Article  ADS  Google Scholar 

  48. Araújo, M., Feix, A., Costa, F., Brukner, C.: Quantum circuits cannot control unknown operations. New J. Phys. 16, 093026 (2014)

    Article  ADS  Google Scholar 

  49. Sugawara, M.: A new quantum control scheme for multilevel systems based on effective decomposition by intense laser fields. J. Chem. Phys. 130, 094103 (2009)

    Article  ADS  Google Scholar 

  50. Yip, F.L., Mazziotti, D.A., Rabitz, H.: A local-time algorithm for achieving quantum control. J. Phys. Chem. A 107, 7264 (2003)

    Article  Google Scholar 

  51. Zhu, W., Rabitz, H.: Quantum control design via adaptative tracking. J. Chem. Phys. 119, 7 (2003)

    Google Scholar 

  52. Rothman, A., Ho, T.S., Rabitz, H.: Quantum observable homotopy tracking control. J. Chem. Phys. 123, 134104 (2005)

    Article  ADS  Google Scholar 

  53. Ho, T.S., Rabitz, H.: Accelerated monotonic convergence of optimal control over quantum dynamics. Phys. Rev. E 82, 026703 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  54. Salomon, J., Turicini, G.: On the relationship between the local tracking procedures and monotonic schemes in quantum optimal control. J. Chem. Phys. 124, 074102 (2006)

    Article  ADS  Google Scholar 

  55. Kuhn, J., da Luz, M.G.E.: Piecewise time-independent procedure to control two-level systems. Phys. Rev. A 75, 053410 (2007)

    Article  ADS  Google Scholar 

  56. Schirmer, S.G., Koli, A., Oi, D.K.L.: Experimental Hamiltonian identification for controlled two-level systems. Phys. Rev. A 69, 050306(R) (2004)

    Article  ADS  Google Scholar 

  57. Ho, T.S., Rabitz, H., Chu, S.I.: A general formulation of monotonically convergent algorithms in the control of quantum dynamics beyond the linear dipole interaction. Comp. Phys. Commun. 182, 14–17 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Zhu, W., Smit, M., Rabitz, H.: Managing singular behavior in the tracking control of quantum dynamical observables. J. Chem. Phys. 110, 1905 (1999)

    Article  ADS  Google Scholar 

  59. Peirce, A.P., Dahleh, M., Rabitz, H.: Optimal control of quantum mechanical systems: existence, numerical approximation, and applications. Phys. Rev. A 37, 4950 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  60. Dahleh, M., Peirce, A.P., Rabitz, H.: Optimal control of uncertain quantum systems. Phys. Rev. A 42, 1075 (1990)

    Article  ADS  Google Scholar 

  61. Boscain, U., Charlot, G., Gauthier, J.P., Guérin, S., Jauslin, H.R.: Optimal control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys. 43, 2107–2132 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Khaneja, N., Kehlet, C., Luy, B., Glaser, S.J.: Broadband relaxation optimized polarization transfer in magnetic resonance. Proc. Natl. Acad. Sci. U.S.A. 101, 14742 (2003)

    Article  ADS  Google Scholar 

  63. Zhu, W., Botina, J., Habitz, H.: Rapidly convergent iteration methods for quantum optimal control of population. J. Chem. Phys. 108, 1953 (1998)

    Article  ADS  Google Scholar 

  64. Ohtsuki, Y., Kono, H., Fujimura, Y.: Quantum control of nuclear wave packets by locally designed optimal pulses. J. Chem. Phys. 109, 9318 (1998)

    Article  ADS  Google Scholar 

  65. Beltrani, V., Ghosh, P., Rabitz, H.: Exploring the capabilities of quantum optimal dynamical discrimination. J. Chem. Phys. 130, 164112 (2009)

    Article  ADS  Google Scholar 

  66. Ho, T., Rabitz, H.: Accelerated monotonic convergence of optimal control over quantum dynamics. Phys. Rev. E 82, 026703 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  67. Donovan, A., Beltrani, V., Rabitz, H.: Quantum control by means of Hamiltonian structure manipulation. Phys. Chem. Chem. Phys. 13, 7348 (2011)

    Article  Google Scholar 

  68. Sugny, D., Kontz, C.: Optimal control of a three-level quantum system by laser fields plus von Neumann measurement. Phys. Rev. A 77, 063420 (2008)

    Article  ADS  Google Scholar 

  69. Reich, D.M., Ndong, M., Koch, C.P.: Monotonically convergent optimization in quantum control using Krotov’s method. J. Chem. Phys. 136, 104103 (2012)

    Article  ADS  Google Scholar 

  70. Maday, Y., Salomom, J., Turinici, G.: Monotonic parareal control for quantum systems. SIAM J. Numer. Analys. 45, 2468–2482 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  71. Borzi, A., Salomom, J., Volkweinm, S.: Formulation and numerical solution of finite-level quantum optimal control problems. J. Comp. Appl. Math. 216, 170–197 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  72. Ditz, P., Borzi, A.: A cascadic monotonic time-discretized algorithm for finite-level quantum control computation. Comp. Phys. Commun. 178, 393–399 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Von Winckel, G., Borzi, A.: QUCON: a fast Krylov–Newton code for dipole quantum control problems. Comp. Phys. Commun. 181, 2158–2164 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Wang, Q., Nakagiri, S.: Quantum numerical control for free elementary particle. Appl. Math. Comput. 217, 5695–5701 (2011)

    MathSciNet  MATH  Google Scholar 

  75. Jha, A., Beltrani, V., Rosenthal, C., Rabitz, H.: Multiple solutions in the tracking control of quantum systems. J. Phys. Chem. A 113, 7667 (2009)

    Article  Google Scholar 

  76. Chadan, K., Sabatier, P.C.: Inverse Problems in Quantum Scattering Theory, 2n edn. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  77. Suchowski, H., Natan, A., Bruner, B.D., Silberberg, Y.: Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps. J. Phys. B 41, 074008 (2008)

    Article  ADS  Google Scholar 

  78. Barberoglou, M., Gray, D., Magoulakis, E., Fotakis, C., Loukakos, P.A., Stratakis, E.: Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses. Opt. Express 21, 18501 (2013)

    Article  ADS  Google Scholar 

  79. Harel, G., Akulin, V.M.: Complete control of Hamiltonian quantum systems: engineering of Floquet evolution. Phys. Rev. Lett. 82, 1 (1999)

    Article  ADS  Google Scholar 

  80. Brion, E., Carlier, F., Harel, G., Akulin, V.M.: Nonholonomic quantum control. J. Phys. B 44, 154001 (2011)

    Article  ADS  Google Scholar 

  81. Meyn, K.H.: Solution of undetermined nonlinear equations by stationary iteration methods. Numer. Math. 42, 161–172 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  82. Stiros, S.C., Saltogianni, V.: Solution of underdetermined systems of equations with gridded a priori constraints. SpringerPlus 3, 145 (2014)

    Article  Google Scholar 

  83. Tang, S.M., Kok, W.C.: A globally convergent procedure for solving a system of nonlinear algebraic equations. J. Phys. A 18, 2691 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Christara, C.C., Jackson, K.R.: Numerical Methods. In: Trigg, G.L. (ed.) Mathematical Tools for Physicists. Wiley-VCH, Weinheim (2005)

    Google Scholar 

  85. Byrne, G.D., Hall, C.A. (eds.): Numerical Solutions of Systems of Nonlinear Algebraic Equations. Academic Press, New York (1973)

    Google Scholar 

  86. Dolotin, V., Morozov, A.: Introduction to Non-Linear Algebra. World Scientific, Singapore (2007) arXiv:hepth/0609022v4

  87. Chein-Shan, L., Atluri, S.N.: A novel time integration method for solving a large system of non-linear algebraic equations. CMES 31, 71 (2008)

    MathSciNet  MATH  Google Scholar 

  88. Hosseini, M.M., Kafash, B.: An efficient algorithm for solving system of nonlinear equations. Appl. Math. Sci. 4, 119–142 (2010)

    MathSciNet  MATH  Google Scholar 

  89. Amitay, Z., Gandman, A., Chuntonov, L., Rybak, L.: Multichanel selective femtosecond coherent control based on symmetry properties. Phys. Rev. Lett. 100, 193002 (2008)

    Article  ADS  Google Scholar 

  90. Borzi, A., Stadler, G., Hohenester, U.: Optimal quantum control in nanostructures: theory and application to generic three-level system. Phys. Rev. A 66, 053811 (2002)

    Article  ADS  Google Scholar 

  91. Ning, X.J.: Removing population trapping in a five-level system with fast decay. J. Opt. Soc. Am. B 20, 2363–2369 (2003)

    Article  ADS  Google Scholar 

  92. Schulman, L.S., Doering, C.R., Gaveau, B.: Linear decay in multi-level quantum systems. J. Phys. A 24, 2053 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. Schulman, L.S.: Experimental test of the “Special state” theory of quantum measurement. Entropy 14, 665–686 (2012)

    Article  ADS  MATH  Google Scholar 

  94. Press, D., Ladd, T.D., Zhang, B., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)

    Article  ADS  Google Scholar 

  95. Zhuang, C., Paul, C.R., Liu, X., Maneshi, S., Cruz, L.S., Steinberg, A.M.: Coherent control of population transfer between vibrational states in an optical lattice via two-path quantum interference. Phys. Rev. Lett. 111, 233002 (2013)

    Article  ADS  Google Scholar 

  96. Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 355 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  97. Gautam, K., Rawat, T.K., Parthasarathy, H., Sharma, N.: Realization of commonly used quantum gates using perturbed harmonic oscillator. Quant. Inf. Process. 14, 3257–3277 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. Seideman, T., Shapiro, M., Brumer, P.: Quantum control of molecular processes. J. Chem. Phys. 90, 7132 (1989)

    Article  ADS  Google Scholar 

  99. Fu, H., Schirmer, S.G., Solomon, A.I.: Complete controllability of finite-level quantum systems. J. Phys. A 34, 1679 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. Zhang, P., Shen, J.Q.: Double-control quantum interferences in a four-level atomic system. Opt. Express 15, 6484 (2007)

    Article  ADS  Google Scholar 

  101. Stowe, M.C., Pe’er, A., Ye, J.: Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb. Phys. Rev. Lett. 100, 203001 (2008)

    Article  ADS  Google Scholar 

  102. Anton, M.A., et al.: Optical switching by controlling the double-dark resonances in a \(N\)-tripod five-level atom. Opt. Commun. 281, 6040 (2008)

    Article  ADS  Google Scholar 

  103. Wang, Z., et al.: Atom localization via controlled spontaneous emission in a five-level atomic system. Ann. Phys. (NY) 327, 1132 (2012)

    Article  ADS  MATH  Google Scholar 

  104. Kompa, K.L., Levine, R.D.: A molecular logic gate. PNAS 98, 410–414 (2001)

    Article  ADS  Google Scholar 

  105. Lorente, N., Joachim, C. (eds.): Architecture and Design of Molecule Logic Gates and Atom Circuits. Springer, Berlin (2013)

    Google Scholar 

  106. Waseem, M., Irfan, M., Qamar, S.: Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity. Quant. Inf. Process. 14, 1869–1887 (2015)

    Article  ADS  MATH  Google Scholar 

  107. Ibragimov, N.H., Ibragimov, R.N.: Invariant solutions as internal singularities of nonlinear differential equations and their use for qualitative analysis of implicit and numerical solutions. Commun. Nonlinear Sci. Numer. Simul. 14, 3537 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. Atluri, S.N., Liu, C.S., Kuo, C.L.: A modified Newton method for solving non-linear algebraic equations. J. Mar. Sci. Technol. 17, 238 (2009)

    Google Scholar 

  109. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  110. Loring, T.A.: Computing a logarithm of a unitary matrix with general spectrum. Numer. Linear Algebra Appl. 21, 744–750 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  111. Sakurai, J.J.: Moderna Quantum Mechanics, 1st edn. Addison-Wesley, Reading (1985)

    Google Scholar 

Download references

Acknowledgments

We thank CNPq and Ciência Sem Fronteiras program (MGEL) and Capes (GJD) for research grants and Lawrence S. Schulman for elucidating discussions about solutions for the restricted time evolution problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. E. da Luz.

Appendices

Appendix 1: An equivalent system to Eq. (5), the existence of a \(M_{\min }\), and a numerical test for the controllability of a given QC task

With the help of Eq. (2), it is easy to show that Eq. (5) is fully equivalent to

$$\begin{aligned}&{\mathcal U}^{(\varepsilon )} \, C^{({\varepsilon })} = \tilde{C}^{({\varepsilon })} \ \ \text{ or } \text{ likewise } \ \ \, {{\mathcal U}^{(\varepsilon )}}^{\dagger } \, \tilde{C}^{({\varepsilon })} = C^{({\varepsilon })}, \end{aligned}$$
(15)
$$\begin{aligned}&\text{ with } \ \ {\mathcal U}^{(\varepsilon )} = \exp [-i \tilde{\tau } H^{(\varepsilon )}/\hbar ]. \end{aligned}$$
(16)

To each unitary \({\mathcal U}^{(\varepsilon )}\) satisfying to Eq. (15), it must correspond an unique \(H^{(\varepsilon )}\) [109]. In practice, we do not use Eqs. (15)–(16) because they are numerically more cumbersome to solve than Eq. (5). Indeed, the mentioned interrelation between the elements of \(H^{(\varepsilon )}\) (denoted by \(I_H\)) implies into interdependence (denoted by \(I_{{\mathcal U}}\)) between the \({\mathcal U}^{(\varepsilon )}\) matrix elements. But how \(I_H\) implies in \(I_{{\mathcal U}}\) is generally difficult to determine,Footnote 3 so hard to handle in Eqs. (15)–(16). However, the structure of Eqs. (15)–(16) is twofold helpful: to prove the existence of a \(M_{min}\) and to implement the numerical test mentioned in Sect. 2.3.

A basic linear algebra resultFootnote 4 is the following. For a \({\mathcal U}^{(\varepsilon )}\) solving Eq. (15), it must be possible to write both \(\tilde{C}^{({\varepsilon })}\) and \(C^{({\varepsilon })}\) Footnote 5 as linear combinations of the rows of, respectively, \({\mathcal U}^{(\varepsilon )}\) and \({{\mathcal U}^{(\varepsilon )}}^{\dagger }\). Furthermore, since \({\mathcal U}^{(\varepsilon )}\) obeys Eq. (16), its matrix structure is obviously dictated by the specific characteristics of \(H^{(\varepsilon )}\).

To establish the existence of a \(M_{min}\) for Eq. (5), we start arguing that always there are solutions if V is totally arbitrary. Assume for \(H^{(\varepsilon )}\) independent \(v_{n m}\)’s and \(\varphi _{n m}\)’s in Eq. (1) (a situation barely found in practice, but useful for our reasoning here), thus \(M_V = N^2\). Reciprocally, the \({\mathcal U}^{(\varepsilon )}_{n m}\)’s from Eq. (16) can all be taken as independent from each other, and the number of unknown real variables specifying \({\mathcal U}^{(\varepsilon )}\) is then \(N^2\). From the converse of the linear algebra property above, these \(N^2\) variable suffice to solve Eq. (15). Moreover, they can lead to many possible solutions (this fact is reinforced considering that often we have many choices for the \(\tilde{C}^{({\varepsilon })}\)’s, cf. Eq. (3)). Hence, for each \({\mathcal U}^{(\varepsilon )}\) matching Eq. (15), we get a distinct \(H^{(\varepsilon )}\) by numerically calculating \(\ln [{\mathcal U}^{(\varepsilon )}]\) [110] (any unitary matrix has a well-defined logarithm [109]). So, the one step control is always possible in this case.

Now, for a certain QC (totally specified by \(C^{({\varepsilon })}\) and \(\tilde{C}^{({\varepsilon })}\)), one may depart from the previous ‘ideal’ situation of \(N^2\) parameters. One could systematically decrease \(M_V\) by considering more and more restrictive \(I_{{\mathcal U}}\)—assuming specific functional relations between the \({\mathcal U}^{(\varepsilon )}_{n m}\)’s, which set the number of free variables—and check for the existence of solutions for Eq. (15). This might be a complicated procedure. However, the point here is not its actual implementation. Instead, to realize that from this process we conceivably can find \(M_{\min } \le N^2\) for \({\mathcal U}\). Since there is a one-to-one association \(I_H \leftrightarrow I_{{\mathcal U}}\), such \(M_{\min }\) also corresponds to the minimum number of parameters for \(H^{(\varepsilon )}\). Lastly, given the equivalence between Eqs. (15)–(16) and Eq. (5), for each \(C^{({\varepsilon })}\) and \(\tilde{C}^{({\varepsilon })}\), the same \(M_{\min }\) also unconditionally solves Eq. (5).

Finally, we can employ a simple numerical test to evaluate whether the considered number of parameters \(M_V\) (say, \(M_V = 2\)) is adequate for the control. Suppose we are having difficulties to find solutions for Eq. (5). So, for a specific S and a tentative form for \(H^{({\varepsilon })}\), at each control step we can generate distinct \(\tilde{C}^{({\varepsilon })}\)’s and reasonable (e.g., experimentally feasible) values for the control parameters, creating thus a grid in the parameters space. Each point in this grid corresponds to a ‘probe’ \(H^{(\varepsilon )}\). So, from Eq. (15) (with \({\mathcal U}^{(\varepsilon )}\) coming directly from \(H^{(\varepsilon )}\) through Eq. (16)), we verify whether these probe Hamiltonians can lead, as we sweep the grid, to proper solutions. This kind of analysis is also used in some other methods [50, 54]. But here, since for each proposed \(H^{(\varepsilon )}\) Eq. (15) becomes a straightforward linear system of equations, the procedure is computationally very fast. Hence, we can test relatively large grids. These checks, of course, are not mathematical formal demonstrations that a certain QC is or is not generally achievable for a specified \(M_V\). Nevertheless, they can indicate whether typically the given \(M_V\) is enough for the control task. When the best parameter intervals are determined (once the adequate \(M_V\) is found), we can come back to Eq. (5) for the detailed calculations of \(H^{(\varepsilon )}\).

Appendix 2: Parameterization for the 1D harmonic oscillator

Using atomic units (so mass and \(\hbar \) are set to 1), Ref. [58] considers a 1D harmonic oscillator (HO) Hamiltonian \(H_0 = -(1/2) \, d^2/dx^2 + \omega ^2 x^2/2\) interacting with a dipolar laser field potential \(V = - \epsilon \, \mu \), with \(\epsilon = \epsilon (t)\) and the dipole function given by \(\mu = x^2/2 - \gamma \, x\). For \(| k \rangle \) and \(e_k = (k+1/2) \, \omega \), respectively, the eigenstate and eigenenergy k (\(= 0, 1, 2, \ldots \)) of \(H_0\), we have the matrix elements (for \(\delta _{k l}\) the Kronecker’s delta)

$$\begin{aligned} \langle k | V | l \rangle= & {} - \epsilon \, \left\langle k \left| \frac{x^2}{2} - \gamma \, x \right| l \right\rangle = \epsilon \, c_{k l}, \nonumber \\ \langle k | H_0 | l \rangle= & {} \left( k +\frac{1}{2}\right) \, \omega \, \delta _{k l}. \end{aligned}$$
(17)

From basic quantum results for the HO (e.g., [111]), for any \(k,l = 0,1,2,\ldots \), we get

$$\begin{aligned} c_{k l}= & {} - \left\{ \frac{1}{4 \omega } \Big [ (2 k + 1) \delta _{k l}\right. \nonumber \\&\left. +\,\sqrt{(k + 2)(k + 1)} \delta _{k l-2} + \sqrt{k (k - 1)} \delta _{k l+2} \Big ]\right. \nonumber \\&\left. -\,\frac{\gamma }{\sqrt{2 \omega }} \Big [ \sqrt{k} \delta _{k l+1} + \sqrt{k+1} \delta _{k l-1} \Big ] \right\} . \end{aligned}$$
(18)

So, the parameterization in Eq. (1) for no phases for \(\epsilon (t)\) (\(\epsilon \) real) yields \(\varphi _{k+1 \, l+1} = 0\) and \(v_{k+1 \, l+1} = \epsilon \, c_{k l}\) (recall that in our method notation, the indices nm of \(\varphi _{n m}\) and \(v_{n m}\) range over \(1, 2, \ldots , N\)). Hence, \(v_{n n} \ne 0\) and all the \(v_{n m}\)’s are proportional to each other and to an unique control parameter \(\epsilon \).

In the basis \(\{ |k \rangle \}\), the matrix elements of the observable \({\mathcal O} = x\) read

$$\begin{aligned} \langle k | x | l \rangle = \frac{1}{\sqrt{2 \omega }} \Big [ \sqrt{k} \delta _{k l+1} + \sqrt{k+1} \delta _{k l-1} \Big ]. \end{aligned}$$
(19)

Hence, by taking the first N levels (\(k=0,1,\ldots ,N-1\)) of the OH, we can construct matrices of distinct sizes for the observable x. By numerically diagonalizing them, we find the following corresponding sets (with \(\omega = 4\))

$$\begin{aligned} N=3 :&\{ o_1 = -o_3, o_2 = 0, o_3 = +0.612 \}, \nonumber \\ N=4 :&\{ o_1 = -o_4, o_2 = -o_3, o_3 = +0.262, o_4 = +0.825 \},\nonumber \\ N=5 :&\{ o_1 = -o_5, o_2 = -o_4, o_3 = 0, o_4 = +0.479, \nonumber \\&o_5 = +1.010 \}. \end{aligned}$$
(20)

The target trajectory S(t) for this problem in Eq. (13) (\(t \ge 0\)) has numerical minimum and maximum of -0.2031 and +1. Since we must choose a set of observable eigenvalues able to span the full range of values of S, from Eq. (20) we see that we need to work at least with 5 levels of the OH to achieve the QC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delben, G.J., da Luz, M.G.E. General tracking control of arbitrary N-level quantum systems using piecewise time-independent potentials. Quantum Inf Process 15, 1955–1978 (2016). https://doi.org/10.1007/s11128-016-1241-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1241-z

Keywords

Navigation