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Revealing quantum correlation by negativity of the Wigner function
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We analyze two two-mode continuous variable separable states with the same marginal states. We
adopt the definition of classicality in the form of well-defined positive Wigner function describing
the state and find that although the states possess positive local Wigner functions, they exhibit
negative Wigner functions for the global states. Using the negativity of Wigner function as an
indicator of nonclassicality, we show that despite these states possess different negativities of the
Wigner function, they do not reveal this difference as phase space nonclassicalities such as negativity
of the Mandel Q parameter or quadrature squeezing. We then concentrate on quantum correlation
of these states and show that quantum discord and local quantum uncertainty, as two well-defined
measures of quantum correlation, manifest the difference between negativity of the Wigner functions.
The non-Gaussianity of these states is also examined and show that the difference in behavior of their
non-Gaussianity is the same as the difference between negativity of their Wigner functions. We also
investigate the influence of correlation rank criterion and find that when the states can be produced
locally from classical states, the Wigner functions can not reveal their quantum correlations.
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I. INTRODUCTION

In continuous variables quantum systems, the nonclas-
sicality of a state is closely related to the nonclassicality
of the corresponding quasiprobability distribution func-
tions in phase space [1]. Because of the uncertainty prin-
ciple, it is not possible to define a unique well-defined
distribution function, however, there exists a continuous
family of quasiprobability distribution functions

F (f)(α) =

∫

d2λ

π2
exp

(

αλ∗ − α∗λ+
f

2
|λ|2

)

Tr(D(λ)ρ),

(1)
ranging from the Husimi function Q(α) = F (−1)(α) to
the Glauber-Sudarshan function P (α) = F (+1)(α) as f
ranges from −1 to +1. Here D(λ) = exp

(

λa† − λ∗a
)

is

the displacement operator, with a and a† as annihilation
and creation operators satisfying [a, a†] = 1. The Husimi
Q function [2] is defined by Q(α) = 〈α|ρ|α〉/π and the
Glauber-Sudarshan P function [3, 4] is a diagonal repre-
sentation of the state operator ρ in the coherent state |α〉,
i.e. ρ =

∫

d2αP (α)|α〉〈α|. The case f = 0 corresponds
to the Wigner function [5] and is an especially impor-
tant case because integrals of the Wigner function yield
the correct quantum mechanical marginal distributions
for position and momentum [6]. Although the Husimi
Q function can never become negative, it is not the case
for the other ones, in the sense that there exist states
for which F (f)(ρ) is not a regular distribution function
for any f . In particular, the Wigner function W is not
always positive and the Glauber-Sudarshan P function
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can become negative or more singular than a delta func-
tion over some region of phase space. A state whose
Wigner function takes on negative values over some re-
gion of phase space is nonclassical, however, the converse
is not necessarily true, i.e. there exist states with positive
Wigner function which show nonclassical properties.

Perhaps one of the most important application of the
Wigner function is in the classification of continuous vari-
ables quantum states according to the classical vs non-
classical and Gaussian vs non-Gaussian paradigms [7–12].
For pure one- and multi-mode states, it was proven by
Hudson [7] and Soto and Claverie [8], respectively, that
the Gaussian states, i.e. states for which the associated
Wigner function is a Gaussian function, are the only pure
states which have nonnegative Wigner functions. Steps
toward the extension of the Hudson theorem to char-
acterize mixed quantum states with a positive Wigner
function [9] have been made by finding upper and lower
bounds on the degree of non-Gaussianity of states with
positive Wigner functions [10], and looking at criteria
to detect quantum non-Gaussian states, i.e. nonclassical
states that cannot be expressed as a convex mixture of
Gaussian states [11, 12].

With the rise of quantum information science, other
important signature of quantumness and the role of
negativity of the Wigner function as an indicator have
attracted attentions. It is shown that quantum non-
Gaussian states with positive Wigner functions are not
useful for quantum computation [13, 14], implies that the
negativity of the Wigner function can be grasped as a re-
source in quantum computing and simulation. In view
of this, efforts have been made to suggest quantitative
measures of nonclassicality either as the volume of the
negative part of the Wigner function [15], or as the dis-
tance to the convex subset of positive Wigner functions
[16].

Quantum correlation is a manifestation of nonclassical-
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ity of composite quantum systems, and a question arises
as to whether the negative Wigner function can be in-
terpreted as a sign of the quantumness of correlation.
Two aspects of quantum correlations are quantum en-
tanglement [17, 18] and quantum discord [19, 20]. Quan-
tum entanglement is defined within the entanglement-
separability paradigm [21]; a bipartite state ρ is entan-
gled if it is not separable, i.e. if it cannot be writ-
ten as a convex combination of product states as ρ =
∑

i piρ
A
i ⊗ρBi where ρAi and ρBi are states onHA andHB,

respectively. In the light of this, the well-defined positive
P function of a two-mode state is a sufficient condition
for separability, i.e. ρ =

∫

d2α1d
2α2P (α1, α2)|α1〉〈α1| ⊗

|α2〉〈α2|. However, we have to mention that it’s nega-
tivity does not necessarily mean entanglement because
this negativity could be the result of nonclassicality of
a local state or correlations beyond entanglement [22].
Although the amount of entanglement is invariant un-
der local unitary transformations, nonclassicality does
not possess this property. Marek et al. [22] utilized
this property for Gaussian states, and found local uni-
tary operations to remove all the local manifestations of
nonclassicality with the goal of reducing global nonclassi-
cality as much as possible, leading to the equivalence be-
tween criteria of nonclassicality and entanglement. How-
ever, entanglement is not the only aspect of quantum
correlations and there exist quantum correlations that
can not be captured by entanglement. In [19] Ollivier
and Zurek have introduced quantum discord as a mea-
sure of quantum correlation beyond entanglement (see
also [20]), and it is discovered that it can be responsi-
ble for the quantum efficiency of deterministic quantum
computation with one qubit [23, 24]. Quantum discord
is defined from an information-theoretic perspective; a
bipartite state ρ is said to have nonclassical correlation
with respect to part A if it cannot be distinguished locally
on part A, i.e. if it is not possible to find orthonormal
basis ΠAi = |ai〉〈ai| of HA such that ρ can be written as
ρ =

∑

i piΠ
A
i ⊗ ρBi . In [25] it has been shown that the

set of classical-classical states, i.e. separable states that
are locally distinguishable and do not possess quantum
discord in any side, and the set of states with a positive
P representation are almost disjoint and they are maxi-
mally inequivalent. In another word, the set of positive
P functions do not often includes the set of zero-discord
states, and vice versa.

An important difference between the quantum correla-
tion within the entanglement-separability paradigm and
the one described by the information-theoretic perspec-
tive is the fact that quantum entanglement can not in-
crease under local operations and classical communica-
tion (LOCC) but quantum discord would be increased.
Moreover, it has been pointed out that [26] local opera-
tions performed on a classical state can produce a state
with nonzero quantum discord. Very recently, Mani et al.
[27] have considered two sets of separable Bell-diagonal
states which have different nonzero quantum correlations,
although they are prepared by the same type of quantum

operations acting on classically correlated states with
equal classical correlations. They have investigated this
difference and found that it is related to the hidden clas-
sical correlation which is needed for preparation of these
states.

In this paper we focus on the possible connection be-
tween nonclassicality in phase space and nonclassical cor-
relation. In particular, we concentrate on the negativ-
ity of the Wigner function as an indicator of the non-
classicality in phase space and the nonclassical correla-
tion defined from an information-theoretic aspect, i.e.
quantum discord. To this aim we introduce two two-
mode separable states with nonzero quantum discord,
and study their nonclassicality both from the nonclassi-
cality in phase space and the existence of nonclassical cor-
relations. Our motivation to choose these states is that:
(i) Both states are classical within the entanglement-
separability paradigm, but they are nonclassical when
we look them from the information-theoretic perspec-
tive. (ii) The states possess the same marginal states
with positive Wigner functions. (iii) The Wigner func-
tions of these states are negative with different values of
negativity. Having these states, we first look at various
manifestation of phase space nonclassicalities and find
that although these states possess different negativities
of the Wigner function, they do not manifest this differ-
ence as the phase space nonclassicalities such as nega-
tivity of the Mandel parameter or quadrature squeezing.
We then focus our attention to the quantum correlations
of these states and quantify their quantum correlations
by original quantum discord [19], local quantum uncer-
tainty (LQU) [28], and geometric discord [26]. We find
that quantum correlation reveals this difference in the
sense that the state with more negativity of the Wigner
function possesses more quantum correlation, measured
by either the quantum discord [19] or by LQU. The non-
Gaussianity of these states is also examined and it is
shown that the difference between their non-Gaussianity
is the same as the difference between negativity of their
Wigner functions.

Further, we study the role of the correlation rank cri-
terion in revealing quantum correlation by negativity of
the Wigner function. For this purpose we introduce two
other separable states with the same nonzero quantum
discord. Moreover, in contrary to the previous case, the
introduced states are such that the associated correla-
tion rank of these states is 2, so that their quantum cor-
relations can be created by local channels [26]. In this
case, our calculations show that both states and their
marginals possess the same positive Wigner functions.
Our results show that the ability of Wigner function to
capture the quantum correlation is failed when the states
can be produced locally from classical states.

Finally, we consider two classical states which possess
the same positive local Wigner functions, but their global
Wigner functions are negative. The negativity of global
Wigner function of these states are different, however
they do not exhibit squeezing and their Mandel Q pa-
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rameters take the same negative values. Looking at the
states show that the states change to each other by local
unitary transformation, an operation that leaves invari-
ant classical, quantum and total correlations. So that the
difference between negativities of these states can not be
explained by aforementioned nonclassicalities. This lead
us to introduce a new quantity using a local unitary op-
eration that bring local subsystems to classical and, at
the same time, reduce the amount of the negativity of the
Wigner function of the state as much as possible [22]. By
definition such defined quantity is invariant under local
unitary operations performed on the subsystems and as-
sociate to each state, up to a local unitary operation, a
unique measure of nonclassicality.
The remainder of this paper is organized as follows. In

section II we introduce two two-mode states and study
their Wigner functions. The negativity of their Wigner
functions as well as their Mandel parameters and degrees
of squeezing are also examined in this section. Section III
is devoted to the quantum correlations of these states. In
section IV, we study two quantum correlated states with
rank 2 and study the role of correlation rank criterion.
We conclude the paper in section V with a brief discus-
sion.

II. TWO DISCORDANT SEPARABLE STATES

An important class of states of the continuous vari-
ables quantum systems is the so-called coherent states
[3, 4, 29]. Coherent states result from applying the dis-
placement operator D(α) to the vacuum state |0〉 of the
quantized field, i.e. |α〉 = D(α)|0〉 for α ∈ C. They
constitute the overcomplete set of the eigenstates of the
annihilation operator a, i.e. a|α〉 = α|α〉, and can be
expressed in terms of the photon-number states {|n〉 =
(a†)n√
n!
|0〉}∞n=0 as |α〉 = e−

1
2 |α|

2 ∑∞
n=0

αn

√
n!
|n〉. Moreover,

coherent states are the only states minimizing the Heisen-
berg uncertainty relation, and their photon number dis-
tribution is the Poissonian statistics, i.e. Pn(|α|2) =

|〈n|α〉|2 = e−|α|2 |α|2n
n! .

Now, let |γ〉 and | − γ〉 be two coherent states of the
single-mode Hilbert space Hs, (s = A,B). Obviously,
these states are not orthogonal in the sense that Γ =
〈γ| − γ〉 = exp (−2|γ|2). However, one can define two
orthogonal states |γe〉, |γo〉, i.e. even and odd coherent
states [30, 31], as

|γe,o〉 = Ne,o(|γ〉 ± | − γ〉), (2)

whereNe,o = 1/
√

2(1± Γ) is the normalization constant.
With these preliminary single-mode states in hand, we

are now in a position to define two two-mode states ρ(++)

and ρ(+−), acting on the Hilbert space H = HA ⊗ HB,
as

ρ(++) =
1

4

(

|γ〉〈γ| ⊗ |γ〉〈γ|+ | − γ〉〈−γ| ⊗ | − γ〉〈−γ|

+ |γe〉〈γe| ⊗ |γe〉〈γe|+ |γo〉〈γo| ⊗ |γo〉〈γo|
)

, (3)

ρ(+−) =
1

4

(

|γ〉〈γ| ⊗ | − γ〉〈−γ|+ | − γ〉〈−γ| ⊗ |γ〉〈γ|

+ |γe〉〈γe| ⊗ |γo〉〈γo|+ |γo〉〈γo| ⊗ |γe〉〈γe|
)

, (4)

Interestingly, both of these states have the same marginal
states with respect to the modes A and B, i.e. defining
ρA = TrB[ρ] and ρB = TrA[ρ], we find

ρ
(++)
A = ρ

(++)
B = ρ

(+−)
A = ρ

(+−)
B (5)

=
1

4
(|γ〉〈γ|+ | − γ〉〈−γ|+ | γe〉〈γe|+ |γo〉〈γo|),

It turns out that the Wigner function of the above state
can be written as

W ρ
(++)
A =W ρ

(++)
B =W ρ

(+−)
A =W ρ

(+−)
B (6)

=
1

4
(Wγ(α) +W−γ(α) +Wγe(α) +Wγo(α)),

where Wψ(α) denotes the Wigner function of the pure
state |ψ〉. Using Eq. (1) and the combination rule for the
displacement operator asD(λ)D(γ) = e(λγ

∗−λ∗γ)/2D(λ+
γ), we get

Wγ(α) =W−γ(−α) =
2

π
exp {−2|γ − α|2},

Wγe(α) = N2
e {Wγ(α) +Wγ(−α) + 2W0(α) cos (4ℑαγ∗)} ,

Wγo(α) = N2
o {Wγ(α) +Wγ(−α)− 2W0(α) cos (4ℑ(αγ∗))} ,

whereW0(α) =Wγ=0(α), ℜαγ∗ = Re(αγ∗), and ℑαγ∗ =
Im(αγ∗). Clearly, both Wγ(α) and W−γ(α) are nonneg-
ative, but Wγe(α) and Wγo(α) may take negative values
for some values of γ and α. However, the sum of these lat-
ter Wigner functions become positive in the whole phase
space. To see this, and for further use, let us rewrite the
local Wigner function (6) as

W ρ
(++)
A =W ρ

(++)
B =W ρ

(+−)
A =W ρ

(+−)
B (7)

=
1

2
(Wq(α) +Wc(α)),

where

Wq(α) =
1

2
(Wγ(α) +W−γ(α)) (8)

=
2

π
exp {−2(|α|2 + |γ|2)} cosh (4ℜαγ∗),

Wc(α) =
1

2
(Wγe(α) +Wγo(α)) (9)

=
2

π(1− Γ2)
exp {−2(|α|2 + |γ|2)}

× {cosh (4ℜαγ∗)− cos (4ℑαγ∗)} ,

Evidently, both Wq(α) and Wc(α) are nonnegative ev-
erywhere in phase space, so that local state (5) possesses
nonnegative Wigner function, as depicted in Fig. 1 for
|γ| = 2 .
Now in order to calculate the Wigner function of the

global states (3) and (4), we need to use the fact that
the Wigner function of the product states is given by
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FIG. 1. (Color online) Local Wigner functions of the states

ρ(++) and ρ(+−), with |γ| = 2.

the product of the Wigner functions of each part, i.e.
W ρ1⊗ρ2(α1, α2) =W ρ1(α1)W

ρ2(α2). Using this we find

W ρ(++)

(α1, α2) =
1

4
(Wγ(α1)Wγ(α2) +W−γ(α1)W−γ(α2)

+Wγe(α1)Wγe(α2) +Wγo(α1)Wγo(α2)),

W ρ(+−)

(α1, α2) =
1

4
(Wγ(α1)W−γ(α2) +W−γ(α1)Wγ(α2)

+Wγe(α1)Wγo (α2) +Wγo(α1)Wγe(α2)).

These Wigner functions are not positive in the whole
phase space. Negativity of the Wigner function is a wit-
ness of nonclassicality of the state, so that measuring any
departure from positivity of the Wigner function may be
used as a quantitative witness of the nonclassicality of
the state. To this aim, we use the volume of the nega-
tive part of the Wigner function [15] as a measure of the
nonclassicality. More precisely, the nonclassical volume
is defined as a quadruple volume of the integrated nega-
tive part of the Wigner function of a two mode quantum
state as [15]

δNW (ρ) =

∫

· · ·
∫

|Wρ(p1, q1, p2, q2)|dq1dp1dq2dp2 − 1.

(10)
Using this definition, one can calculate negativity of the
Wigner function for the states above. In Fig. 2, we
have plotted δNW (ρ(++)) and δNW (ρ(+−)) as a func-
tion of |γ|. As it is apparent from the figure, both
states possess nonclassicality. Indeed, for low values
of |γ| the states have different negativities δNW (ρ),
namely δNW (ρ(+−)) < δNW (ρ(++)), but by increasing
the value of |γ|, they reach to the same asymptotic value
δNW (ρ(+−)) ≈ δNW (ρ(++)) ≈ 0.2. Now, we have two
composite systems whose subsystems possess the same
positive Wigner functions, whereas their global Wigner
functions retain negative values. As the classicality of the
subsystems is not sufficient for the nonclassicality of the
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FIG. 2. (Color online) Negativity of the Wigner function

versus |γ| for states ρ(++) (blue, solid line) and ρ(+−) (red,
dashed line).

overall state to be identified with entanglement [22], this
nonclassicality is due to various nonclassicality in phase
space, such as squeezing or quantum statistics, or it may
be interpreted as a signature of other correlations, such
as classical correlation or quantum correlation beyond
entanglement.
Before we proceed further to consider nonclassical-

ity in phase space and nonclassical correlation for these
states, let us investigate the nonclassical behavior of
these states measuring by non-Gaussianity. By defini-
tion, the quantum state ρ is said to be Gaussian if its
characteristic function or, equivalently, its Wigner func-
tion has a Gaussian form, so that Gaussian states possess
positive Wigner functions. Gaussian states have mini-
mum entanglement for given second moments and non-
Gaussian states are useful to improve parameter estima-
tion [32, 33]. Indeed, there exists a connection between
nonclassicality and non-Gaussianity in the sense that all
pure non-Gaussian states are nonclassical states, and any
pure state with non-negativeWigner function is Gaussian
[7, 34]. Deviations from Gaussian behavior are often the
sign that an interesting nonclassical phenomenon occurs
and several measures of non-Gaussianity were proposed
[35–38]. According to [38], the degree of non-Gaussianity
of a state ρ is defined by

δNG(ρ) = S(ρ ‖ τ), (11)

where S(ρ1 ‖ ρ2) = Tr[ρ1(ln ρ1 − ln ρ2)] is the quantum
relative entropy between states ρ1 and ρ2. Here τ is the
reference Gaussian state with the same first and second
moments of ρ. This property of reference state τ leads
to Tr[ρ ln τ ] = Tr[τ ln τ ], so that

δNG(ρ) = S(τ)− S(ρ), (12)

where S(ρ) is the von Neumann entropy of the state ρ.
Also S(τ) = h(d+) + h(d−) where

h(x) = (x+
1

2
) ln(x+

1

2
)− (x− 1

2
) ln(x− 1

2
), (13)
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FIG. 3. (Color online) Quantum non-Gaussianity versus |γ|

for states ρ(++) (blue, solid line) and ρ(+−) (red, dashed line).

and d2± = 1
2

(

∆(δ)±
√

∆(δ)2 − 4I4

)

are the symplectic

eigenvalues of the covariance matrix σ of the reference
Gaussian state τ . Here ∆(δ) = I1 + I2 + 2I3 where I1 ≡
det(A), I2 ≡ det(B), I3 ≡ det(C), and I4 ≡ det(σ) are
four local symplectic invariants of the covariance matrix

σ =

(

A C
C† B

)

, (14)

where

σjk =
1

2
〈{Rj , Rk}〉 − 〈Rj〉 〈Rk〉 , (15)

with R = {q1, p1, q2, p2}. For the considered states ρ(++)

and ρ(+−) we find

σρ
(++)

=









u 0 γ2

2 0
0 v 0 0
γ2

2 0 u 0
0 0 0 v









, (16)

σρ
(+−)

=









u 0 − γ2

2 0
0 v 0 0

− γ2

2 0 u 0
0 0 0 v









, (17)

respectively, where u = 1
2

(

1 + 2γ2(2−Γ2)
1−Γ2

)

and v =

1
2

(

1 + 2γ2Γ2

1−Γ2

)

. Figure 3 shows the behavior of non-

Gaussianity of ρ(++) and ρ(+−) in terms of |γ|. This fig-
ure shows that for low values of |γ| we have δNG(ρ(+−)) <
δNG(ρ

(++)), but by increasing the value of |γ|, they reach
asymptotically to the same value. We are now in the po-
sition to study the various nonclassicalities of these states
in phase space.
Mandel parameter.— As it is already mentioned in sec-

tion II, coherent states are the only states that their
photon number distribution is the Poissonian statistics,

i.e. the variance of the photon number distribution is
equal to the expected value of the photon number. It fol-
lows that although a coherent state possesses a maximum
coherence between the photon numbers, all the photon
number detections are independent. On the other hand,
when for the same mean photon number the distribution
has a larger or smaller variance than a Poissonian dis-
tribution, the distribution is called super-Poissonian or
sub-Poissonian, respectively. The Mandel Q parameter
measures the departure of the photon statistics of the
field from the Poissonian statistics [39] in the sense that
Q > 0 and Q < 0 correspond to the super-Poissonian
and sub-Poissonian distribution, respectively. The super-
Poissonian statistics refers to the photon bunching effect
which can be described by classical optics [40]. On the
other hand, the sub-Poissonian statistics is a signature of
photon antibunching [41], a nonclassical characteristic of
light with photons more equally spaced than a coherent
laser field.
The Mandel Q parameter is defined as the normalized

variance of the photon distribution and in each mode is
defined by

Qs =
〈a†2s a2s〉 − 〈a†sas〉2

〈a†sas〉
, (s = A,B). (18)

Hence, the Q parameter for both of the states ρ(++) and
ρ(+−) takes the same value

Qs(ρ
(++)) = Qs(ρ

(+−)) = −|γ|2Γ2 2− Γ2

1− Γ2
, (19)

for s = A,B, which clearly takes negative value for all |γ|.
As a matter of fact the notion of Mandel parameter de-
fined by Eq. (18) for each mode of the two-mode states is
a trivial extension of the definition formulated primarily
[42] for one-mode situations. Indeed, the sub-Poissonian
statistics of a two-mode state may in general manifested
in the linear combination of the modes different from the
mode chosen for the analysis [43]. In view of this, Arvind
et al. [43] have defined the Mandel Q parameter for the
SU(2) transformed mode

a(α) = α∗
1a1 + α∗

2a2, a(α)† = α1a
†
1 + α2a

†
2, (20)

of a two-mode state ρ as

Q(ρ;α) =
〈a†2(α)a2(α)〉 − 〈a†(α)a(α)〉2

〈a†(α)a(α)〉 . (21)

Here α1 and α2 are complex numbers such that |α1|2 +
|α2|2 = 1. Based on this, the signature of the nonclassical
nature of ρ, as manifested in the photon statistics, is
defined by the SU(2) invariant definition of the Mandel
Q parameter as [43]

Q(ρ) = min
α∈SU(2)

Q(ρ;α) = Q(ρ;α), (22)

where a(α) denotes the mode in which the sub-Poissonian
statistics is manifested to the maximum degree. Now, af-
ter some calculations, we find for both states ρ(++) and
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FIG. 4. Mandel Q parameter versus |γ| for the states ρ(++)

and ρ(+−).

ρ(+−) that α1 = 1, α2 = 0 or α1 = 0, α2 = 1, so that sub-
Poissonian nature manifested by Eq. (19) is the most
that can be revealed by ρ. Figure 4 shows the Q param-
eter of these states versus |γ|. This figure demonstrate,
however, that the considered states do exhibit same pho-
ton statistics, i.e. the Mandel parameter can not distin-
guish the nonclassicality of these two states exhibited by
negativity of the Wigner function.
Squeezing.— Now we look at the quadrature squeez-

ing of our considered states. Defining the superposition
quadrature operators as [44]

X1 =
1

2
√
2
(a1 + a†1 + a2 + a†2), (23)

X2 =
−i
2
√
2
(a1 − a†1 + a2 − a†2), (24)

the system possesses squeezing in one of the quadra-

tures 1 or 2 if condition (∆X1)
2 <

1

4
or (∆X2)

2 <
1

4
is satisfied. Equivalently, one can describe the presence
of squeezing in quadrature 1 or 2 if condition Dj =
4(∆Xj)

2 − 1 < 0 is satisfied for j = 1 or 2. For the

states ρ(++) and ρ(+−) we find

Dρ(++)

1 = Dρ(+−)

1 + 4γ2x, Dρ(++)

2 = Dρ(+−)

2 + 4γ2y ,(25)

and

Dρ(+−)

1 = 2
γ2x + γ2yΓ

2

1− Γ2
, Dρ(+−)

2 = 2
γ2y + γ2xΓ

2

1− Γ2
, (26)

respectively, where we have used γx = Reγ and γy =
Imγ. Clearly, the two-mode quadrature squeezing for
both states ρ(++) and ρ(+−) is zero, i.e. squeezing can
not distinguish these two states.

III. QUANTUM CORRELATION

So far we have shown that the nonclassicality proper-
ties of a two-mode photon field, such as sub-Poissonian

statistics and quadrature squeezing cannot distinguish
these two states. Now we turn our attention on the
quantum correlation to investigate in detail the differ-
ence between two states. To this aim, we first note that
states ρ(++) and ρ(+−) have the two-qubit representation
by defining computational basis {|e〉 = |γe〉, |o〉 = |γo〉},
for an arbitrary value of γ and for each mode A and
B. By definition, these qubit basis depends on the value
of γ, so that any change in γ leads to the new vec-
tors in the infinite-dimensional Fock space of the light.
For example, in the limiting case γ → 0, the states |e〉
and |o〉 reduce to the vacuum and single-photon states
{|0〉, |1〉}, respectively, but on the other hand in the limit
of large value of γ the coherent states |γ〉 and | − γ〉
become macroscopically distinguishable, so that the vec-
tors |e〉 and |o〉 reduce to the so called Schrödinger’s cat
states 1√

2
(|γ〉 ± | − γ〉), respectively. Now, with this def-

initions, in the two-qubit basis {|ee〉, |eo〉, |oe〉, |oo〉} we
find

ρ(++) =







w1 0 0 w2

0 w2 w2 0
0 w2 w2 0
w2 0 0 w3






, (27)

ρ(+−) =







w′
1 0 0 −w2

0 w′
2 −w2 0

0 −w2 w′
2 0

−w2 0 0 w′
3






, (28)

where we have defined

w1,3 =
1

8
[(1± Γ)2 + 2], w2 =

1

8
(1− Γ2), (29)

w
′

1,3 =
1

8
(1± Γ)2, w′

2 =
1

8
(3− Γ2). (30)

For further use, let us mention here that for a general γ
these states not only are locally but also globally unitar-
ily inequivalent, in the sense that they possess different
spectrum of eigenvalues given by

Eig(ρ(++)) =
{

0, 1/4, (2 + Γ2)/4, (1− Γ2)/4
}

, (31)

Eig(ρ(+−)) =
{

0, 1/4, (1 + Γ2)/4, (2− Γ2)/4
}

. (32)

However, in the limit of γ → ∞ the two states reduce
to Bell-diagonal states, i.e. states with maximally mixed
marginals, and become equivalent up to a local unitary
transformation iσy = σzσx preformed on the one of the
subsystems. As a result, as we will see in the following, in
the limit γ →∞ nonclassical futures of the above states
are equivalent. Moreover, one can easily see that for

an arbitrary γ we have det (T ρ
(++)

) = det (T ρ
(+−)

) = 0,
where T is a 3× 3 matrix defined by Tij = Tr(ρσi ⊗ σj)
with σi (i = 1, 2, 3) as the Pauli matrices. This, implies
that the above states are fundamentally different from
the two-qubit separable states with maximally mixed
marginals, considered in [27]. Indeed, the states of Ref.
[27] belong to the two different classes with regard to
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the sign of det (T ), but they becomes locally equivalent
if det (T ) = 0.
As these states are both separable, i.e. disentangled,

we therefore pay attention to the quantum correlation
beyond the quantum entanglement. To this aim, we use
quantum discord, local quantum uncertainty (LQU), and
geometric discord as the possible measures of quantum
correlation.
Quantum discord.— Quantum discord of a bipartite

state ρ, acting on the Hilbert space H = HA ⊗ HB , is
defined as the difference between two classically equiv-
alent but quantum mechanically different definitions of
quantum mutual information as

Q(A)(ρ) = I(ρ)− J (A)(ρ), (33)

where I(ρ) = S(ρA)+S(ρB)−S(ρ) is the mutual informa-
tion, measuring the total correlation of the bipartite state

ρ, and J (A)(ρ) = max{ΠA

i
} J {ΠA

i
}(ρ) is the classical cor-

relation of the state ρ. Here S(·) being the von Neumann
entropy, and ρA(B) = TrB(A)(ρ) is the marginal state cor-

responding to the subsystem A(B). Also J {ΠA

i
}(ρ) de-

notes the mutual information of the same system after
performing the local measurement {ΠAi } on the subsys-
tem A and can be written as follows [19]

J {ΠA

i
}(ρ) = S(ρB)−

∑

i

piS(ρ|ΠAi ). (34)

In this equation {ΠAi } = {|ai〉〈ai|} is the set of projection
operators on the subsystem A, and the conditional state
ρ|ΠAi is the post-measurement state, i.e. ρ|ΠAi = 1

pi
(ΠAi ⊗

IB)ρ(ΠAi ⊗IB), where pi = Tr[(ΠAi ⊗IB)ρ(ΠAi ⊗IB)] being
the probability of the i-th outcome of the measurement
on the subsystem A. We notice here that the quantum
discord is in general not symmetric under the swap of the
two parties, A ←→ B, i.e. measuring on A rather than
B may induce different amounts of disturbance on the
generic bipartite states.
Turning our attention to the states ρ(++) and ρ(+−),

one can easily find that the optimal measurement is σz
[45, 46], so that

Q(ρ(++)) = h4(w1, w2, w3, w2)− S(ρ(++)), (35)

Q(ρ(+−)) = h4(w
′
1, w

′
2, w

′
3, w

′
2)− S(ρ(+−)), (36)

where hm(p1, · · · , pm) =
∑m
i=1−pi log pi denotes the

Shannon entropy of the probabilities {p1, · · · , pm}, and
wi and w′

i are defined by Eqs. (29) and (30), respec-
tively. Figure 5-a compares the quantum correlation of
these states, measured by quantum discord, as a function
of |γ|. Interestingly, two states have different quantum
discords. More precisely, for low values of |γ| (γ 6= 0)
we have Q(ρ(+−)) < Q(ρ(++)), but by increasing the
value of |γ|, the discords reach to the same asymptotic
value. This behavior is in agreement with the negativ-
ity of the Wigner function (Fig. 2) as well as with the
non-Gaussianity (Fig. 3), so that quantum discord can
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FIG. 5. (a) Quantum discord and (b) LQU versus |γ| for the

states ρ(++) (blue, solid line) and ρ(+−) (red, dashed line).

exhibit the difference between nonclassicality of states
ρ(++) and ρ(+−).
Local quantum uncertainty.— Local quantum uncer-

tainty (LQU) of a bipartite state ρ is defined by [28]

UΛ
A(ρ) ≡ min

KΛ
I(ρ,KΛ), (37)

where minimum is taken over all local observables on A
with nondegenerate spectrum Λ and

I(ρ,K) = −1

2
Tr{[ρ1/2,K]2}, (38)

is the skew information [47]. For an arbitrary state ρ of
a qubit-qudit system defined on C2 ⊗ Cd, UΛ

A admits a
computable closed formula as [28]

UA(ρ) = 1− λmax, (39)

where λmax denotes the maximum eigenvalue of the 3×3
symmetric matrix W whose matrix elements are

(W )ij = Tr{ρ1/2(σiA ⊗ IB)ρ
1/2(σjA ⊗ IB)}, (40)

for i, j = 1, 2, 3. For the states ρ(++) and ρ(+−) one can
find

U(ρ(++)) =
1− Γ2

2(1 + Γ2)2

(

2− (1 − Γ2)
√

2 + Γ2
)

, (41)

U(ρ(+−)) =
1

1 + Γ2
−
√
2− Γ2

2
. (42)
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In Fig. 5-b we have plotted the LQU in terms of |γ|.
Remarkably, LQU can also reveals the difference between
nonclassicality of these states manifested by negativity of
the Wigner function (Fig. 2) or non-Gaussianity (Fig. 3).
Geometric discord.— The geometric discord DG is de-

fined as the squared Hilbert-Schmidt distance between
the bipartite state ρ and the closest classical-quantum
state χ [26]

DG(ρ) = inf
χ∈Ω
‖ρ− χ‖22, (43)

where Ω denotes the set of zero-discord states. For a gen-
eral two-qubit state, a closed relation for the geometric
discord is given in [26]. For the states considered in this
paper, we find that both states have the same geometric
discord

DG(ρ
(++)) = DG(ρ

(+−)) =

(

1− Γ2

4

)2

. (44)

So that, geometric discord can not manifest the difference
between the quantum correlation of these states.
The difference of negativity of the Wigner function of

states ρ(++) and ρ(+−) is only seen in quantum correla-
tions of these states, measured by quantum discord or
LQU, whereas all the other nonclassicalities are equal or
do not exist, so that one can conclude that this difference
is caused by quantum correlation beyond entanglement.
However, as it is clear from the figures 2 and 5, this con-
clusion is flawed for γ = 0 where the states take different
nonclassicality of the Wigner function but possess the
same quantum correlation, measured by quantum dis-
cord or LQU. As we will see below, this incompleteness
in the connection between nonclassicality of the Wigner
function and the quantum correlation can be explained
by the notion of rank criterion.

IV. CORRELATION RANK CRITERION

The rank L of a density operator determines the num-
ber of orthogonal operators which is needed to repre-
sent a density matrix, and is an important discrete mea-
sure for deciding that [48]: whether a quantum corre-
lated state can be produced from a classical state by
means of local operations, i.e. is the quantum correla-
tion useful for quantum processing tasks. For a two-qubit
classical state we have L ≤ 2, whereas a general two-
qubit quantum state can achieve all values 1 ≤ L ≤ 4.
Therefore for states with nonzero discord that can be
created locally from classical states we have L ≤ 2 [48].
Turning our attention to the states (3) and (4) one can
see that, when γ 6= 0, both states have equal rank
L(ρ(++)) = L(ρ(+−)) = 3, i.e. they can not be prepared
locally from classical states, however, for γ = 0 the rank
of both states reduces to 2, so that they can be prepared
from classical states by means of local channels. Using
this fact we will argue that the disability of quantum cor-
relation to capture the difference in nonclassicality of the

Wigner functions of the states ρ(++) and ρ(+−) for γ = 0,
may be related to the locally producibility of these states
from classical states. In the light of this, one may expect
that the classical correlation can reveal this difference, in
particular for γ = 0 where the states can be prepared by
quantum operations acting on the classically correlated
states. Looking at the total and classical correlations of
these states, one can find that the states possess different
nonzero total

I(ρ(++)) = 2S(ρ
(++)
A )− S(ρ(++)), (45)

I(ρ(+−)) = 2S(ρ
(+−)
A )− S(ρ(+−)), (46)

and classical correlations

J (ρ(++)) = 2S(ρ
(++)
A )− h4(w1, w2, w3, w2), (47)

J (ρ(+−)) = 2S(ρ
(+−)
A )− h4(w′

1, w
′
2, w

′
3, w

′
2), (48)

depicted in Fig. 6, where S(ρ
(++)
A ) = S(ρ

(+−)
A ) =

h2(
1
2+

Γ
4 ,

1
2− Γ

4 ). As it is clear from Figs. 6-a and 6-b, for
small values of |γ| both total and classical correlations of
the state ρ(++) are larger than the corresponding quan-
tities of the state ρ(+−), i.e. I(ρ(++)) > I(ρ(+−)) and
J (ρ(++)) > J (ρ(+−)). More importantly when γ = 0,
i.e. when the states can produced locally from classically
correlated states, the classical correlation captures the
difference between nonclassicality of the Wigner function,
a future that is out of the scop of quantum correlation.
Quantum states with correlation rank 2.— To provide

additional insight for understanding the role of rank in
such states, let us consider the following rank 2 states,
obtained from the first two terms of states (3) and (4)

σ(++)
q =

1

2
(|γ〉〈γ| ⊗ |γ〉〈γ|+ | − γ〉〈−γ| ⊗ | − γ〉〈−γ|) ,(49)

σ(+−)
q =

1

2
(|γ〉〈γ| ⊗ | − γ〉〈−γ|+ | − γ〉〈−γ| ⊗ |γ〉〈γ|) ,(50)

respectively. It is remarkable that the above states can
be created locally from the classically states. To see this
let us define the channel Φ as

Φ(X) = |γ〉〈γe|X |γe〉〈γ|+ | − γ〉〈γo|X |γo〉〈−γ|. (51)

Applying this channel to both modes as Φ ⊗ Φ, we lead
to

σ(++)
q = (Φ⊗Φ)(σ(++)

c ), σ(+−)
q = (Φ⊗Φ)(σ(+−)

c ) (52)

where σ
(++)
c and σ

(+−)
c are two classical states given in

Eqs. (56) and (57).

For both states σ
(++)
q and σ

(+−)
q , the Wigner function

of the local states is given by Eq. (8) which clearly is
positive. Also, one can easily see that both states have
positive global Wigner functions. Moreover, the states
have the same amount of quantum correlations, measured
by either geometric discord

DG(σ
(++)
q ) = DG(σ

(+−)
q )

=
1

16
min

{

(1 − Γ2)2, Γ2(1 + Γ2)
}

, (53)
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FIG. 6. (a) Total and (b) classical correlations versus |γ|

for the states ρ(++) (blue, solid line) and ρ(+−) (red, dashed
line).

or by more probing measures such as quantum discord

Q(σ(++)
q ) = Q(σ(+−)

q )

= h2(w+, w−) + S(σq
(++)
s )− S(σ(++)

q ),(54)

and LQU

U(σ(++)
q ) = U(σ(+−)

q )

= min

{

1−
√

1− Γ2

1 + Γ2
,
1− Γ2

1 + Γ2

}

. (55)

Here, w+ = 1
2+

1
4

√

Γ2 + (1− Γ2)2 and w− = 1−w+, and

S(σ
(++)
q ) = h2

(

1
2 (1 + Γ2), 12 (1− Γ2)

)

and S(σq
(++)
s ) =

h2
(

1
2 (1 + Γ), 12 (1 − Γ)

)

are von Neumann entropies of
global and local states, respectively. Moreover, in this
case both states possess the same amount of classical and
total correlations. A comparison of the above results with
the results we have obtained for states (3) and (4) shows
that although the quantum correlations of states (3) and
(4) are manifested by negativity of the Wigner function,
for the locally producible states (49) and (50) the quan-
tum correlation can not captured by Wigner function.

Classical states with correlation rank 2.— Finally, let
us consider the following two classical states, obtained

from the last two terms of states (3) and (4)

σ(++)
c =

1

2
(|γe〉〈γe| ⊗ |γe〉〈γe|+ |γo〉〈γo| ⊗ |γo〉〈γo|) ,(56)

σ(+−)
c =

1

2
(|γe〉〈γe| ⊗ |γo〉〈γo|+ |γo〉〈γo| ⊗ |γe〉〈γe|) ,(57)

respectively. Local Wigner functions of these states are
positive and are given by Eq. (9). Moreover, both states
have zero quantum correlation and the same classical

and total correlations, namely I(σ(++)
c ) = I(σ(+−)

c ) =

J (σ(++)
c ) = J (σ(+−)

c ) = 1. Negativities of these states
are different and nonzero (Fig. 7-a), however they do
not exhibit squeezing and their Mandel Q parameters
take the same negative values (Fig. 7-b). So that the
difference between negativities of these states can not
be explained by aforementioned nonclassicalities. How-
ever, a glance at these states show that they are locally
equivalent, in the sense that two states change to each
other by unitary transformation Sx = |γe〉〈γo|+ |γo〉〈γe|
performed on the one of the subsystems, i.e. σ

(++)
c =

(Sx⊗ I)σ
(+−)
c (Sx⊗ I). As the amount of quantum corre-

lation as well as classical correlation do not change by lo-
cal unitary transformations, but the nonclassicality does
not possess this property, the difference manifested in Fig
7-a may be related to the other nonclassicalities in phase
space, such as higher order squeezing [49] or the photon
antibunching [41] which is, in general, not equivalent to
the sub-Poissonian distribution [50].

Minimum Negativity.— In the previous example we

see that although the states σ
(++)
c and σ

(+−)
c possess

different negativity of the Wigner function, this differ-
ence does manifested neither as a phase space nonclas-
sicality nor as a quantum correlation. However, as we
mentioned previously these states are locally equivalent.
This implies that performing any local unitary operations
on these states do not influence the amount of quantum
correlation, but can change the negativity of the Wigner
function. Therefore we are looking for a local unitary
operation that brings local subsystems to classical and,
at the same time, reduces the amount of the negativity
of the Wigner function of the state as much as possible
[22]. By definition this associate to each state, up to a
local unitary operation, a unique measure of nonclassi-
cality. Accordingly, we define the following quantity as
the minimum negativity of the state

δmin
NW (ρ) = min

UA⊗UB

δNW ((UA ⊗ UB)ρ(UA ⊗ UB)†). (58)

Here minimum is taken over all local unitary operations
that bring the subsystems to classical, i.e. the subsys-
tems attain positive Wigner functions. Using the above
definition, it is clear that for the locally equivalent states

σ
(++)
c and σ

(+−)
c we have δmin

NW (σ
(++)
c ) = δmin

NW (σ
(+−)
c ).



10

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.20

0.25

0.30

0.35

0.40

 Γ¤

∆
N

W
HΣ

cL

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

ÈΓÈ

Q
HΣ

cL

FIG. 7. (a) Negativity of the Wigner function and (b)

Mendel Q parameter versus |γ| for the states σ
(++)
c (blue,

solid line) and σ
(+−)
c (red, dashed line). Q is the same for

both states.

V. CONCLUSION

We have considered two locally equivalent, but globally
different, two-mode separable states ρ(++) , ρ(+−) and

analyzed the nonclassicality of theses states. It is shown
that in spite of the posivity of the Wigner functions of
the subsystems and equality of the global nonclassical-
ity futures such as Mandel Q parameter and quadrature
squeezing, the negativity of the global Wigner functions
for these states are different. More investigation have rev-
eled that quantum correlation is responsible for the dif-
ference manifested by the negativity of the Wigner func-
tion. Indeed, it is shown that negativity of the Wigner
function, non-Gaussianity, quantum discord, and LQU of
the state ρ(++) are larger than the corresponding quanti-
ties of the state ρ(+−), but the geometric discord of both
states are the same.
We have also investigated the role of rank criterion

and found that when the quantum correlated states can
be produced locally from classically correlated states,
classical correlation, instead of quantum correlation, can
be responsible for the difference between negativity of
the Wigner function of two states. Moreover, we have
also introduced two another pairs of states, denoting by

{σ(++)
q , σ

(+−)
q } and {σ(++)

c , σ
(+−)
c }, with the goal that

the first pair has nonzero quantum correlation but their
quantum correlation can be produced by local channels,
and the second pair exhibits no quantum correlation at
all. More precisely, we have introduced a local chan-
nel Φ ⊗ Φ in such a way that we can prepare the for-
mer pair from the second one. We found that for the
first pair, the Wigner functions of both states are pos-
itive and the states possess the same amount of quan-
tum correlations measured by quantum discord, LQU,
and geometric discord. On the other hand for the sec-
ond pair, which contains two locally unitarily equivalent
states with no quantum correlation, the Wigner func-
tions possess different negativity, although they possess
the same amount of negative Mandel Q parameter and
no evidence for squeezing. In order to overcome this is-
sue we have defined minimum negativity of a state which
is invariant under local unitary operation. Further study
on this measure is under considerations.
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