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Abstract We find that existing multi-party quantum key agreement (MQKA)
protocols designed for fairness of the key are, in fact, unfair. Our analysis shows
that these protocols are sensitive to collusive attacks; that is, dishonest partic-
ipants can collaborate to predetermine the key without being detected. In fact,
the transmission structures of the quantum particles in those unfair MQKA
protocols, three of which have already been analyzed, have much in common.
We call these unfair MQKA protocols circle-type MQKA protocols. Likewise,
the transmission structures of the quantum particles in MQKA protocols that
can resist collusive attacks are also similar. We call such protocols complete-
graph-type MQKA protocols. A MQKA protocol also exists that can resist the
above attacks but is still not fair, and we call it the tree-type MQKA protocol.
We first point out a common, easily missed loophole that severely compromises
the fairness of present circle-type MQKA protocols. Then we show that two
dishonest participants at special positions can totally predetermine the key
generated by circle-type MQKA protocols. We anticipate that our observa-
tions will contribute to secure and fair MQKA protocols, especially circle-type
protocols.
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1 Introduction

Key establishment (KE) is an important cryptographical primitive, which al-
lows participants to share a common secret key via an insecure channel. KE
may be broadly subdivided into key agreement (KA) and key distribution
(KD) [1]. KD is also called key transport. In a KD protocol, one party creates
a secret key, and securely distributes it to the other(s). And in a KA protocol,
a shared secret is derived by two (or more) parties as a function of informa-
tion contributed by each of them [I2L[3]. The main difference between a KA
protocol and a KD protocol is that the key is generated by all the partici-
pants together in the former, but by one alone in the latter. The security of
the classical key agreement is based on the computation complexity. However,
along with the proposing of efficient algorithms and the development of the
computing capability, especially the rapid development of quantum computer,
classical key agreement faces more and more austere challenges [41[5].

In the last three decades, quantum cryptography has become a hot topic
in cryptography. Various of quantum cryptographic protocols have been pro-
posed, such as quantum key distribution [61[789LT0,TTL12], quantum secret
sharing [13[14l[15], quantum secure direct communication [T6,17,18/19], quan-
tum private comparison [20/21122], and so on [23|24]2526]. Quantum key
agreement (QKA) uses quantum mechanics to guarantee the security and the
fairness of the generated keys. Different from the security of the classical key
agreement which might be susceptible to the strong ability of quantum com-
putation, the security of QKA is simply based on physical principles such
as Heisenberg uncertainty principle and quantum no-cloning theorem. Conse-
quently, QKA can stand against the threat from an attacker with the ability of
quantum computation [2728]. Since the first QKA protocol was proposed by
Zhou et al. in 2004 [29], lots of QKA protocols have been proposed, including
both the two-party ones[303TL32L33,[34] and the multi-party ones [3536.37,
38,39, 4014114243, [44.[45./46].

What draws special attention is that the security of QKA protocol is more
complicated than that of QKD. The generated key in a QKA protocol should
not be determined by any non-trivial subset of the participants. And this is
a difficulty in the design of QKA protocols, especially the multi-party ones,
which need not only to resist the attacks from the single participant as in
two-party ones, but also to prevent the collusive attacks where part of the
participants cooperate to cheat the other(s).

According to the transmission structures of quantum particles, we divide
all the previous multi-party QKA (MQKA) protocols into three categories
(See Fig. [l below). In the first category, every participant sends each of the
other participants a sequence of particles which carries the information of
his/her personal secret key [35l86137], and we call them the complete-graph-
type MQKA (CGT-MQKA) protocols. While in the second category, every
participant only sends out one sequence, which will be operated by each of
the other participants in turn and finally sent back to the one who prepared
it [39.40L[4T1[42|431[44[45], and we call these ones the circle-type MQKA (CT-
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MQKA) protocols. Obviously, CT-MQKA protocols are more efficient than
CGT-MQKA ones in the sense that they consume less quantum resource.
However, it is a challenge to design an unconditionally fair CT-MQKA proto-
col. The first MQKA protocol[39)] is just a circle-type one; however it has been
proved unfair, in Ref [35], since any single dishonest participant can totally
predetermine the key. In the meantime, the first CGT-MQKA protocol, which
has been proved fair against both single attacks and collusive attacks, has
been proposed [35]. Afterwards, people continued to explore new CT-MQKA
protocols because of the higher efficiency. In the later proposed CT-MQKA
protocols [40L[4T1421[43[441[45], none of the participants can predetermine the
key without cooperating with others. While the loopholes concerning collu-
sive attacks are unimpressive and easily been ignored in the fairness analysis.
Unfortunately, we find that all the existing CT-MQKA protocols are sensi-
tive to collusive attacks. Besides the two categories above, another MQKA
protocol [38] exists which we call the tree-type MQKA (TT-MQKA) protocol
(according to its special transmission structure).

This paper focuses on the collusive attacks against the MQKA protocols.
We prove that in some MQKA protocols, just two dishonest participants at
special positions can totally predetermine the generated key. Since all the ex-
isting CT-MQKA protocols cannot resist this kind of attacks, we think that
our observations will contribute to secure and fair MQKA protocols, especially
circle-type protocols. The rest of this paper is organized as follows. Three cat-
egories of the MQKA protocols, i.e., the complete-graph-type one, the circle-
type one, and the tree-type one, are introduced in section 2. In section 3, we
mainly discuss the fairness of CT-MQKA protocols against collusive attacks.
A short conclusion and a brief discussion on another attack on QKA, which is
also easy to be ignored, are given in section 4.

2 Three Categories of MQKA Protocols

MQKA protocols are difficult to design because of the severe requirement
that the generated key cannot be determined by any nontrivial set of the
participants. There mainly emerged three ways to guarantee the fairness of
the generated key according to the previous MQKA protocols. The first two
ways are similar in the sense that in both of them, each participant P; first
generates a personal key K;, then through one of the above protocols, he
securely receives all the others’ personal keys [351[37] or the result of a bitwise
exclusive OR on all the others’ personal keys [36139,40,41L42,43.44.45], and
the final key is the bitwise exclusive OR result on all the personal keys. While
in the protocol proposed in Ref. [38], the key is generated by the random
measurement results to the N-party GHZ sates
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The overall processes of these three categories of MQKA protocols can be
summarized as follows.

(100---0) + 11+ 1))12, . N- (1)
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Fig. 1 Three categories of MQKA protocols in graph, where the vertices represent the
participants and the (undirected) vertices represent the transmissions of quantum states
between the participants.

— In the first category [35LB36LB37], every participant directly sends his/her
personal keys to each of the other participants. Then each participant, for
example P;, performs a bitwise exclusive OR on all the keys, including
his/her own key, to generate the final key. The difference between these
three protocols is that the one in Ref [35] employs one-way transmission
where the keys are encoded in the quantum states directly, while the rest
ones [36,37] employ two-way transmission where the keys are encoded in
different unitary operations. And all of them employ decoys states to detect
the potential attacks.

— In the second category [39,[40,41L421[43][44.45], every participant (P;) gen-
erates a sequence of entangled states and sends (part of) them to the others.
And the sequence of the particles sent by P; is denoted as S;. After other
participants encoded their personal keys in S; in turn, S; would be sent
back to P;. Then P; measures the entangled states to get the result of the
bitwise exclusive OR on all the others’ personal keys, denoted as K_;. Fi-
nally, he performs a bitwise exclusive OR on K; and K_; to get to final
key. In most of them, S; “runs” a circle begin with P;;; and ends with
P,_1. An exception is the protocol in Ref. [45], P; generates two sequences
S34 and Sgs, each of which “runs” half of the circle.

— In Ref [38], one participant (Alice) generate a sequence of GHZ states
as in Eq. [l For each of the GHZ states, Alice delivers each of the other
participants one of its particles. Some of the GHZ states are used to perform
the detections, while the others are used to generate the final key. It’s worth
noting that in this protocol, every participant will communicate with each
of the other participants in the detection processes.

If we consider the participants and the transmissions of quantum states
between them as the vertices and the edges in a graph respectively, the pro-
tocols [35L361[37] of the first kind are complete graphs, and the protocols [39,
40,4T[421[431[4445] of the second kind are circles (See Fig.[Il). And this is why
we call them the complete-graph-type MQKA and circle-type MQKA respec-
tively. For the three-party ones [363740,[42[43], where the complete graphs
are just the circles, we classify them by considering their extensional versions
to N-party ones, where N>3. Or, we can classify them by simply checking
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Fig. 2 The protocols in [36l[37] can be considered as the left directed graph, while the
protocols in [40,42l[43] can be considered as the right one.

whether they are directed complete graphs, for example, protocols in [36][37]
are, but ones in [40l[42l[43] are not (See Fig. ). The protocol in Ref. [38] is a
tree graph with only one root (Alice). Therefore, the protocol in Ref. [38] is
called the tree-type MQKA. In fact, the tree-type QKA protocol is sensitive
to a special attack called detection bits chosen attack [47] which we will briefly
introduce in conclusions.

Obviously, CT-MQKA protocols need less communications and less quan-
tum channels than CGT-MQKA ones for the same number of participants.
This is the main reason why people tend to design circle-type ones. However,
CT-MQKA protocols face more threatens on fairness than CGT-MQKA proto-
cols. in next section, we will introduce the collusive attacks against CT-MQKA
protocols.

Above categories only considered the transmission of quantum particles. If
the classical communications are also considered, the protocols in Refs. [38][39]
[43] become complete graphes, and we call them classical complete-graph-type
MQKA protocols.

3 Collusive Attacks Against Circle-Type MQKA Protocols

We first formalize the multi-party CT-MQKA protocols that we are attacking.
Suppose there are N participants Py, Pi, ..., Pv—1 and their personal keys
are Ko, K1, ..., Kn—1, respectively.

At the beginning of the protocol, P; generates a sequence of entangled
states |¥;) [ and divides each state into two parts, one of which will be kept

1 The single states generated in some protocols can be considered as the entangled states
where parts of them (R;) have already been measured, just like that in the security proof
of BB84 [48).
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in his/her hand and the other will be sent out. And we denote the sequence
of the two parts as R; and S;, respectively, where i=0, 1, ..., N—1.

Then all the S;s are transmitted in the same direction in the circle. Once
all the S;s have been transmitted from one participant to the next one, the
participants keep the sequences that they have just received for a while, dur-
ing which they perform the detection and encode their personal keys in the
received sequences. Afterwards, they continue to send the above sequences to
the next participant.

After passing through all the other participants, each sequence would be
sent back to the participant who generated it (finishing a complete circle).
Then P; can measure R; and S; to get the bitwise exclusive OR results of all
the other participants’ personal keys. Finally, they can calculate the final key
Kﬁnal:eai]\;_ol K;.

For the convenience of description, we divide the whole process of the above
N-party protocol into NV periods.

In the first period, P; generates S; and R; and send S; 4 to P;mq, where “B”
represents addition modular N and “H” below represents subtraction modular
N.

The k-th (2<k<N-1) period starts from the moment when each partici-
pant P; has received the sequence S;g(x—1), which is prepared by Pigx—1) in
the first period and sent from Pjg; in the (k—1)-th period. And in the k-th
period, the participant P; performs the detection processesﬁ with P;g; and
Pim1 to detect the possible attacks on Sig;—1) and Sigy, in the (k—1)-th pe-
riod respectively, and then encodes his/her personal key K; in S;g(;—1). Then
P; inserts some decoy states in it and sends it to P;m;. The k-th period ends
and the (k+1)-th period starts when all the participants have received the
sequences sent to them in the k-th period.

In the last (the N-th) period, P; performs the detection processes with P;g;
and P;g; as before. Then P; measures R; and S; to get the bitwise exclusive
OR result of the others’ personal keys. Finally, P; obtains the final key by
performing a bitwise exclusive OR on the above result and K;.

All the CT-MQKA protocols can be described and disassembled as above,
except the one in Ref. [45]. Nevertheless, the collusive attack which we will
introduce next can also attack it successfully. Now we introduce the collusive
attacks against CT-MQKA protocols, which can be divided into two stages:
key stealing stage and key flipping stage. In key stealing stage, the dishonest
participants manage to get the bitwise exclusive OR result of the others’ per-
sonal keys. And in the key flipping stage, they flip the encoded personal keys
according to the above result to control the final key.

2 TIn fact, S; has changed since P; has probably inserted some decoy particles in it. And
later, other participant will encode their secrets in it and also insert their decoy states in
it. However, for simplicity, we call all the sequences which include the particles of S; simply
Si.

3 The detection processes generally contains three stages, publishing the positions of the
decoy states, measuring them, and comparing the results.
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In fact, any two participants P, and P, (n>m) can cooperate to get the
bitwise exclusive OR results of the personal keys belong to the participants
between them at a certain period (the (n—m)-th and the (N—n+m)-th). The
attack process of the key stealing stage can be described as follows.

1 In the first period, P, (P,,) sends the information about what the states
he/she prepared initially and the sequence R,, (R;,) which should be kept
in his/her hand to P,, (P,). This is equivalent to switching the positions
of each other. Of course, they also share the value of excepted key which
they are trying to make the final key be.

2 In the (n—m)-th period, P, has received the sequence S,,,, which carries the
bitwise exclusive OR result of the personal keys K,,4+1, Km+2, -, Kn—1.
Since P, owns Ry, Sy, and the initial state of them at present, he/she can
extract the above bitwise exclusive OR result in this period just like what
P, should do in the last period. Similarly, P,, can get the bitwise exclusive
OR result of the personal keys K, +1, Kp42, ..., Kn—1, Ko, ..., Kip—1 in
the (N—n+m)-th period. (See Fig. [3)

3 P, (Py) sends the above bitwise exclusive OR result to P, (P,) immedi-
ately he/she gets it.

In the collusive attacks to CT-MQKA protocols, timeliness is a very im-
portant factor. Because of the decoy states, the dishonest participants cannot
tamper (flip) the personal keys encoded by other participants without being
detected. Therefore, to successfully control the final key, the dishonest partic-
ipants should ensure that all the sequences prepared by the other participants
will pass through them at least once after they have get the bitwise exclusive
OR result of all the others’ personal keys. Actually, two dishonest participants
are enough to totally control the final key, as long as their positions in the
circle satisfy the following conditions,

N
2
1

n—m =

N -1 N +
5 Or

for an even N; (2)

n—m=

for an odd N. (3)

We first consider the situation when N is an even number. In the (N/2)-th
period, each of P, and P, gets the bitwise exclusive OR result of half of the
others’ personal keys. After exchanging with each other, they can know what
the legal final key Kgnal should be. Then P,, and P,, will encode

K, =Kn® Kexpected © Kfinal (4)
instead of K, and
K, = Kn® Kexpected @ Kfinal (5)

instead of K, respectively in the rest periods, where K expected is what they
want the final key to be. Then P, can flip the sequences S,,—1, Spm—2, - -, So,
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Fig. 3 The collusive attacks to CT-MQKA protocols in the (N/2)-th period, where N is an
even number and n—m=N/2. The areas circled by the color lines belong to the participants
with the same color. The dashed lines and the dotted lines represent the transmission of
quantum particles happened in last (the (N/2—1)-th) period and the first period, respec-
tively. In the (N/2)-th period, P, can measure Sy, which is sent by P,_1 in last period,
and R,,, which is sent by Py, in the first period, to get the bitwise exclusive OR result of

Kpm+1, Km+2, ..., Kp—1. Similarly, P, can get the bitwise exclusive OR result of K41,
Knt2, .oy Kn—1, Ko, -, K;m—1
SN-1, - -+ Sn+1 and P, can flip the sequences S,,—1, Sn—2, ..., Sm+1. Thus,

in the last period, for any participant P;, he/she will get the
Ke =Ko EK1@...® (Kyor m @ Kexpected @ Kgnal) © - © Kno1

= Kfipa1 @ Kexpected © Kfinal (6)
= Kexpected'

For the odd N, the situation is similar. In the ((IV +1)/2)-th period, one of
the dishonest participants will get the bitwise exclusive OR result of (N —1)/2
personal keys, while the other has already got the result of rest (N — 3)/2
personal keys in last period. Just like what they do when N is even, the former
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dishonest participant, for example P,, can flip the sequences Sy,_1, Spm—2, - - -,
S0, SN—1, - -y Sn+1, and the latter P, can flip the sequences S,,—1, Sp—2, .. .,
Sm+1- Note that the difference between the two cases is that P, should flip
Sn—1 in the period when he/she knows the final key (in the ((N + 1)/2)-th
period) when N is odd, and in the next period (in the (N/2 4 1)-th period)
when N is even.

In fact, as long as the longest distance in the circle between adjacent dis-
honest participants is no more than | (N +1)/2], they can successfully control
the final key, where |z] represents the maximum integer which is not more
than z. In the | (N + 1)/2]-th period of this situation, the dishonest partici-
pants can always get the legal final key during the past and on-going periods
[0,[(N +1)/2]]. And the length of the on-going period and the periods that
have not yet passed [[(N+1)/2], N] is not shorter than that of [0,| (N+1)/2]].
Therefore, in the periods [| (N + 1)/2], N], they always have an opportunity
to flip all the §;s.

For example, three dishonest participants Py, Py/3 and Ppy/3 can also
succeed although no two of them satisfy Eq. @l or Eq. Bl Concretely, at the
(N/3)-th period, they can get the legal final key, and in the next N/3 periods,
they remain to perform the legal operations, while in the last N/3 periods,
they flip the received sequences by encoding the tampered key as K|, and K},
above.

All the CT-MQKA protocols are sensitive to the above collusive attacks,
although the situation for the one in Ref. [45] is a little different. In this specific
protocol, each participant sends out two sequences, each of which “runs” half
circle. For the collusive attack against this protocol, two dishonest participants
cannot succeed any more, since they can only get half of the others’ personal
keys before the last period, which leaves no time for them to flip the others’
sequences. For this specific protocol, three dishonest participants are necessary
and they can succeed as long as they do not located in a same minor arc of
the circle, i.e., an arc whose length is less than half of the circumference.

In fact, the attack strategy described above is an instructional mode of the
attacks to CT-MQKA protocols but not a detailed attack to any specific pro-
tocol. In the attacks to specific MQKA protocols, just as what we have stated
above, the manner for the dishonest participants to steal the personal keys of
the others is the same with the manner for the honest participants to extract
the bitwise exclusive OR result, and the way for the dishonest participants
to flip the legal key is the same with the way for the honest participants to
encode their personal keys. In fact, some attack strategies proposed before are
similar to the one we proposed here; in other words, the proposed model is a
summary of the previous attacks.

For example in the attack strategy proposed by Huang et al. [46], N —1 dis-
honest participants try to predetermine the final key. The key stealing stage is
performed by Py and Py _2, they can steal Py_1’s personal key by performing
the measurement on Z basis or X basis (according to the initial bases of Sy_2)
on each particle in Sy_s. The key flipping stage is performed by Py_o, where
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he flips Py_1’s measurement results by performing I or iY on each particle in
SN_1.

In Zhu et al.’s attack strategy [43] to the three-party MQKA protocol in
Ref. [42], two dishonest participants (Alice and Bob) try to cheat the honest
one (Charlie). In Step 5 of the original protocol, Alice and Bob can deduce
Charlie’s encoding operations by performing Bell measurement to the particle
pairs in the two sequences pp and r¢, where the corresponding particles in
pp and r¢ are initially generated in a Bell state by Bob, and r¢ has been
operated by Charlie to encode his personal key K. The above attack actions
are corresponding to the key stealing stage in our attack mode. Then in Step
6, Alice and Bob performs I or Z according to Charlie’s operations and their
expected key to control the final key. And the above actions are corresponding
to the key flipping stage in our attack mode. However, in their improvement
[43] of the protocol in Ref. [42], each of the three participants encrypts his/her
personal key with another key, and before the detection in the last (third)
period, they announces the latter keys, denoted as additional keys. The authors
[43] think the improved version is fair. However, two dishonest participants, for
example Alice and Bob, can still predetermine the final key. By the collusive
attacks introduced above, Alice and Bob knows what Charlie, the honest one,
has encoded in their sequences, so they know what the bitwise exclusive OR
result of the three keys encoded in the sequences. Thus, they can find a way
to get Charlie’s additional key earlier, then announce the false additional keys
to control the final key. This loophole in this improved version is similar with
that in [39].

4 Discussions

In this paper, we introduce the collusive attacks to CT-MQKA protocols.
Research shows that all the CT-MQKA protocols are unfair against collusive
attacks. Here we summarize the fairness of all the existing MQKA protocols
in Table 1.

In fact, the tree-type MQKA protocol [38] is unfair since the participants
who perform the detection process later can control the key to some extent.
Considering the following simple example of the protocol in Ref. [38] where
three participants, Alice (who generates the GHZ states), Bob and Charlie, are
generating a 2-bit key with 5 GHZ states, and each of them chooses one state
to detect the attacks. In this case, if Bob first chooses one state randomly to
perform his detection, Alice and Charlie might (partly) predetermine the key
through the following detections. Once Bob has finished his detection, Alice
measures all the rest 4 GHZ states and chooses her and Charlie’s detection
states according to the measurement results and their expected key. For exam-
ple, the measurement results are 0101 and their expected key is 10. Thus they
could choose the first and the last states and pretend to perform detections as
usual. The final key would be 10. Peculiarly, according to the results in Ref.
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Table 1 The fairness of all the existing MQKA protocols. Here, CGT represents that the
protocol is a complete-graph-type MQKA protocol, TT represents tree-type one, CT repre-
sents circle-type one, and CCGT represents that this protocol is also a classical complete-
graph-type one.

Fair against Fair against
Protocol Category single a%tacks? collusivegattacks? Comments
35 CGT Yes Yes
30 CGT Yes Yes
37 CGT Yes Yes
The attack effect depends
[38] TT/CCGT No No on the proportion of the
detection states [47]
39 CT/CCGT No No Has been analyzed in [35]
40 CT Yes No
41 CcT Yes No Has been analyzed in [46
42 CcT Yes No Has been analyzed in [43
43 CT/CCGT Yes No
44 CcT Yes No
45 CcT Yes No

[47), if the number of dishonest participants’ detect bits is larger than that of
the final key, they can always totally predetermine the key.

Is it possible to design a fair CT-MQKA protocol? What is clear is that it is
impossible for a “pure” CT-MQKA protocol, according to the analysis above.
Here by “pure” CT-MQKA protocols we mean the MQKA protocols which
are CT-MQKA protocols and are not classical complete-graph-type MQKA
protocols. And whether the complete-graph-type classical communications can
solve the fairness problem of CT-MQKA is an open question.
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