Skip to main content
Log in

Realization of a quantum gate using gravitational search algorithm by perturbing three-dimensional harmonic oscillator with an electromagnetic field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The aim of this paper is to design a current source obtained as a representation of p information symbols \(\{I_k\}\) so that the electromagnetic (EM) field generated interacts with a quantum atomic system producing after a fixed duration T a unitary gate U(T) that is as close as possible to a given unitary gate \(U_g\). The design procedure involves calculating the EM field produced by \(\{I_k\}\) and hence the perturbing Hamiltonian produced by \(\{I_k\}\) finally resulting in the evolution operator produced by \(\{I_k\}\) up to cubic order based on the Dyson series expansion. The gate error energy is thus obtained as a cubic polynomial in \(\{I_k\}\) which is minimized using gravitational search algorithm. The signal to noise ratio (SNR) in the designed gate is higher as compared to that using quadratic Dyson series expansion. The SNR is calculated as the ratio of the Frobenius norm square of the desired gate to that of the desired gate error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, p. 171286. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  2. Shapiro, M., Brumer, P.: Quantum control of bound and continuum state dynamics. Phys. Rep. 425(4), 195–264 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. Moghadam, M.S., Nezamabadi, H., Farsangi, M.M.: A quantum inspired gravitational search algorithm for numerical function optimization. Inf. Sci. 267, 83–100 (2014)

    Article  MathSciNet  Google Scholar 

  4. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 34573467 (1995)

    Article  Google Scholar 

  5. Kumar, P., Skinner, S.R.: Using non-ideal gates to implement universal quantum computing between uncoupled qubits. Quantum Inf. Process. 12(2), 973–996 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Makhlin, Y.: Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations. Quantum Inf. Process. 1(4), 243–252 (2002)

    Article  MathSciNet  Google Scholar 

  7. Levi, D., Moshinsky, M.: Relations between hyperspherical and harmonic-oscillator many-body matrix elements. Il Nuovo Cimento A Series Springer 20(1), 107–114 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  8. Benioff, P.: Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys. 29(3), 515–546 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. R. Soc. Lond. Proc. A 439, 553–558 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Holland, J.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA (1975)

    Google Scholar 

  12. Kirkpatrick, S.: Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34, 975–986 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  13. Kennedy, J., Eberhart, R.: A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, vol. 1, pp. 39–43 (1995)

  14. Dorigo, M., Birattari, M., Stutzle, T.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(1), 29–41 (1996)

  15. Rashedi, E., Nezamabadi, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

  16. Formato, R.A.: Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog. Electromagn. Res. 77, 425–491 (2007)

    Article  Google Scholar 

  17. Gautam, K., Chauhan, G., Rawat, T.K., Parthasarathy, H., Sharma, N.: Realization of quantum gates based on three dimensional harmonic oscillator in a time varying electromagnetic field. Quantum Inf. Process. 14(9), 3279–3302 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gautam, K., Rawat, T.K., Parthasarathy, H., Sharma, N.: Realization of commonly used quantum gates using perturbed harmonic oscillator. Quantum Inf. Process. 14(9), 3257–3277 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Altintas, A.A., Ozaydin, F., Yesilyurt, C., Bugs, S., Arik, M.: Constructing quantum logic gates using q-deformed harmonic oscillator algebras. Quantum Inf. Process. 13, 1035–1044 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Bartlett, S.D., Guise, H.D., Sanders, B.C.: Quantum encodings in spin systems and harmonic oscillators. Phys. Rev. A 65, 052316 (2002)

    Article  ADS  Google Scholar 

  21. Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University Press, New York (1958)

    MATH  Google Scholar 

  22. Divincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)

    Article  ADS  Google Scholar 

  23. Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)

    Article  ADS  Google Scholar 

  24. Zhang, Y., Kauffman, L.H., Ge, M.L.: Universal Quantum Gates, Yang–Baxterizations and Hamiltonians. Quantum Inf. Process. 4, 159–197 (2005). doi:10.1007/s11128-005-7655-7

  25. Altafini, C.: On the generation of sequential unitary gates from continuous time Schrödinger equations driven by external fields. Quantum Inf. Process. 1, 207–224 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navneet Sharma.

Appendices

Appendix 1

Consider Eq. (11),

$$\begin{aligned} H(t|I)=H_0+\epsilon \sum _{k=1}^pI_kV_{1k}(t)+\epsilon ^2\sum _{k,m=1}^pI_kI_mV_{2km}(t) \end{aligned}$$
(67)

where \(V_{1k}(t)\) is a first-order time-dependent linear partial differential operator in q (that is, the sum of a time-dependent function of q and a time-dependent vector field in q), while \(V_{2km}(t)\) is a function of \(q \,\text {and} \,t\), that is, a multiplication operator. The operators are defined as follows

$$\begin{aligned} \sum \limits _k I_k V_{1k}(t)=\frac{1}{2}(P,A(t,r_0+q))+ (A(t,r_0+q),P)- \varPhi (t,r_0+q) \end{aligned}$$
(68)

where \(P=-i\frac{\partial }{\partial q}\) and \(V_{1k}(t)\,\text {and}\, V_{2km}(t)\) is given by

$$\begin{aligned} V_{1k}(t)= & {} -\frac{i}{2}\text {div}\,q \bigg (\frac{\mu }{4\pi |r_0+q|}p_k\bigg (t-\frac{r_0+q}{c}\bigg ){\overrightarrow{d\mathbf{{l}}_k}}\bigg )\nonumber \\&+\, c^2\int \limits _0^t \text {div}\, q \frac{\mu }{4\pi |r_0+q|}p_k\bigg (t-\frac{r_0+q}{c}\bigg ){\overrightarrow{d\mathbf{{l}}_k}}\nonumber \\= & {} - \frac{i \mu }{8\pi }\bigg ({\overrightarrow{d\mathbf{{l}}_k}}, \nabla _q \frac{p_k\big (t-\frac{|r_0+q|}{c}\big )}{|r_0+q|}\bigg )+ \frac{\mu c^2}{4\pi }\int \limits _0^t\bigg ({\overrightarrow{d\mathbf{{l}}_k}}, \nabla _q \frac{p_k\big (t-\frac{|r_0+q|}{c}\big )}{|r_0+q|}\bigg )\hbox {d}t\nonumber \\ \end{aligned}$$
(69)

Now, consider

$$\begin{aligned} \sum \limits _{k,m}I_k I_m V_{2km}(t)= \frac{1}{2}A^2(t, r_0+q) \end{aligned}$$
(70)

where

$$\begin{aligned} V_{2km}(t)= \bigg (\frac{\mu }{4\pi |r_0+q|}\bigg )^2 ({\overrightarrow{d\mathbf{{l}}_k}}, {\overrightarrow{d\mathbf{{l}}_m}}) p_k\bigg (t -\frac{r_0+q}{c}\bigg )p_m\bigg (t -\frac{r_0+q}{c}\bigg ) \end{aligned}$$
(71)

The pulses \(p_k\) have their meaning in Eq. (3).

Appendix 2

Consider Eq. (13),

$$\begin{aligned} U(T|I)=U_0+\epsilon \sum _kI_kU_{1k}+\epsilon ^2\sum _{k,m}I_kI_mU_{2km}+\epsilon ^3\sum _{kml}I_kI_mI_lU_{3kml}+O(\epsilon ^4) \end{aligned}$$
(72)

where \(U_0,U_{1k},U_{2km}, U_{3kml}\) are operators that do not depend on the current amplitudes \(I_1,..., I_p\). In other words, these operators are expressible entirely in terms of the operators \(H_0,V_{1k}(t),V_{2km}(t)\) with the operators \(V_{1k}(t), V_{2k}(t)\) completely independent of \(I_1,..., I_p\), that is, expressible entirely in terms of the current pulses \(p_k(t)\) and the length vectors \(d\mathbf{{l}}_k. U_{1k}, U_{2km}\) and \(U_{3kml}\) are defined as follows.

$$\begin{aligned} U_{1k}&= U_0(T)W_{1k}\end{aligned}$$
(73)
$$\begin{aligned} U_{2km}&=U_0(T)W_{2km} \end{aligned}$$
(74)

and

$$\begin{aligned} U_{3kml}=U_0(T)W_{3kml} \end{aligned}$$
(75)

Now \(W_{1k}, W_{2km}\,\text {and}\, W_{3kml}\) are defined, respectively, as

$$\begin{aligned} W_{1k}=-i \int \limits _0^t\widetilde{V}_{1k}(t)\hbox {d}t \end{aligned}$$
(76)

where \(\widetilde{V}_{1k}(t)= U_0(-t)V_{1k}(t)U_0(t)\) and similarly

$$\begin{aligned} W_{2km}= - \int \limits _{0<t_2<t_1<T}\widetilde{V}_1k(t_1)\widetilde{V}_{1m}(t_2)\hbox {d}t_1\hbox {d}t_2- i\int \limits _0^\mathrm{T} \widetilde{V}_{2km}(t)\hbox {d}t \end{aligned}$$
(77)

where \(\widetilde{V}_{2km}(t)= U_0(-t) V_{2km}U_0(t)\) and

$$\begin{aligned} W_{3kml}&= i\int _{0<t_3<t_2<t_1<T}\widetilde{V}_{1k}(t_1)\widetilde{V}_{1m}(t_2)\widetilde{V}_{1l}(t_3)\hbox {d}t_1\hbox {d}t_2\hbox {d}t_3\nonumber \\&\quad -\int _{0<t_2<t_1<T}\widetilde{V}_{1k}(t_1)\widetilde{V}_{2ml}(t_2)\hbox {d}t_1\hbox {d}t_2-\int _{0<t_2<t_1<T}\widetilde{V}_{2km}(t_1)\widetilde{V}_{1l}(t_2)\hbox {d}t_1\hbox {d}t_2 \end{aligned}$$
(78)

Appendix 3

Consider Eqs. (30) and (31),

$$\begin{aligned} W(T)&= I -i\epsilon \int _0^t \widetilde{V}_1(t_1)\hbox {d}t_1-i\epsilon ^2 \int _0^t \widetilde{V}_2(t_1)\hbox {d}t_1\nonumber \\&\quad - \epsilon ^2\int _{0<t_2<t_1<t} \widetilde{V}_1(t_1)\widetilde{V}_1(t_2)\hbox {d}t_1\hbox {d}t_2\nonumber \\&\quad +i\epsilon ^3 \int _{0<t_3<t_2<t_1<t}\widetilde{V}_1(t_1)\widetilde{V}_1(t_2)\widetilde{V}_1(t_3)\hbox {d}t_1\hbox {d}t_2\hbox {d}t_3 \nonumber \\&\quad -\epsilon ^3\int _{0<t_2<t_1<t}\bigg (\widetilde{V}_1(t_1)\widetilde{V}_2(t_2)+ \widetilde{V}_2(t_1)\widetilde{V}_1(t_2) \bigg ) \hbox {d}t_1\hbox {d}t_2 +O(\epsilon ^4)\end{aligned}$$
(79)
$$\begin{aligned} W(T)&=I+\epsilon F_1+\epsilon ^2F_2+\epsilon ^3F_3+O(\epsilon ^4) \end{aligned}$$
(80)

where

$$\begin{aligned} F_1&=-i\int _0^\mathrm{T}\widetilde{V}_1(t_1)\hbox {d}t_1,\end{aligned}$$
(81)
$$\begin{aligned} F_2&=-i\int _0^\mathrm{T} \widetilde{V}_2(t_1)\hbox {d}t_1 -\int _{0<t_2<t_1<T}\widetilde{V}_1(t_1)\widetilde{V}_1(t_2)\hbox {d}t_1\hbox {d}t_2 \end{aligned}$$
(82)

and

$$\begin{aligned} F_3&=i\int _{0<t_3<t_2<t_1<T}\widetilde{V}_1(t_1)\widetilde{V}_1(t_2) \widetilde{V}_1(t_3)\hbox {d}t_1\hbox {d}t_2\hbox {d}t_3\nonumber \\&\quad -\int _{0<t_2<t_1<T}\bigg (\widetilde{V}_1(t_1)\widetilde{V}_2(t_2) +\widetilde{V}_2(t_1)\widetilde{V}_1(t_2)\bigg )\hbox {d}t_1\hbox {d}t_2 \end{aligned}$$
(83)

with \(\widetilde{V}_k(t)=U_0^*(t)V_k(t)U_0(t)=U_0(-t)V_k(t)U_0(t), k=1,2\). Let \(|n\rangle ,\quad n=1,2,\ldots \) denote the energy eigenstates of \(H_0\) (so far the discussion is general, it is applicable to any non-relativistic charged particle moving in a time-invariant potential and excited by an electromagnetic field). Then, if \(H_0 |n\rangle = E_n |n\rangle , n=1,2\) it follows that

$$\begin{aligned} F_1[n,m]&=\langle n|F_1|m\rangle = -i\int _0^\mathrm{T} \exp (i(E_n-E_m)t_1)\langle n| V_1(t_1)| m\rangle \hbox {d}t_1\end{aligned}$$
(84)
$$\begin{aligned} F_2[n,m]&=\langle n|F_2| m\rangle = -i \int _0^\mathrm{T} \exp (i(E_n-E_m)t_1) \langle n|V_2(t_1)|m\rangle \hbox {d}t_1 \nonumber \\&\quad - \sum _p \int _{0<t_2<t_1<T}\exp (i(E_n-E_p)t_1\nonumber \\&\quad +(E_p-E_m)t_2) \langle n| V_1(t_1)|p \rangle \langle p| V_1(t_2)|m\rangle \hbox {d}t_1\hbox {d}t_2\end{aligned}$$
(85)
$$\begin{aligned} F_3[n,m]&= \langle n|F_3|m\rangle = i\sum _{p_1,p_2}\int _{0<t_3<t_2<t_1<T}\nonumber \\&\quad \times \,\exp \bigg (i(E_n-E_{p_1})t_1+ (E_{p_1}-E_{p_2})t_2+ (E_{p_2}-E_m)t_3\bigg )\nonumber \\&\quad \langle n|V_1(t_1)|p_1\rangle \langle p_1|V_1(t_2)|p_2\rangle \langle p_2|V_1(t_3)|p_3 \rangle \hbox {d}t_1\hbox {d}t_2\hbox {d}t_3\nonumber \\&\quad -\sum _p\int _{0<t_2<t_1<T} \exp (i (E_n-E_p)t_1+(E_p-E_m)t_2) \nonumber \\&\quad \times \bigg (\langle n| V_1(t_1)|p \rangle \langle p|V_2(t_2)|m \rangle + \langle n|V_2(t_1)|p\rangle \langle p| V_1(t_2)|m \rangle \bigg ) \hbox {d}t_1\hbox {d}t_2 \end{aligned}$$
(86)

Thus \(F_1[n,m]= \sum _k I_k G_{1k}[n,m]\), where

$$\begin{aligned} G_{1k}[n,m]= -i \int _0^\mathrm{T} \exp (i E(n,m)t_1)\langle n| V_{1k}(t_1)|m\rangle \hbox {d}t_1 \end{aligned}$$
(87)

similarly, we can write

$$\begin{aligned} F_2[n,m]=\sum \limits _{k,r}I_kI_rG_{2kr}[n,m] \end{aligned}$$
(88)

where

$$\begin{aligned} G_{2kr}[n,m]&= -i \int _0^\mathrm{T} \exp (i(E(n,m)t_1)\langle n| V_{2kr}(t_1)|m \rangle )\hbox {d}t_1\nonumber \\&\quad -\sum _p\int _{0<t_2<t_1<T}\exp (i(E(n,p)t_1)\nonumber \\&\quad +E(p,m)t_2) \langle n|V_{1k} (t_1)|p \rangle \langle p| V_{1r}(t_2)|m\rangle \hbox {d}t_1\hbox {d}t_2 \end{aligned}$$
(89)

Finally

$$\begin{aligned} F_3[n,m]=\sum \limits _{krs} I_k I_r I_s G_{3krs}[n,m] \end{aligned}$$
(90)

where

$$\begin{aligned}&G_{3krs}[n,m]\nonumber \\&\quad = i\sum \limits _{p_1,p_2}\int _{0<t_3<t_2<t_1<T} \exp \bigg \{i \bigg (E(n,p_1)t_1+E(p_1,p_2)t_2+E(p_2,m)t_3\bigg )\bigg \} \nonumber \\&\quad \quad \times \langle n| V_{1k}(t_1)|p_1 \rangle \langle p_1| V_{1r}(t_2)|p_2\rangle \langle p_2 |V_{1s}(t_3)|m\rangle \hbox {d}t_1\hbox {d}t_2\hbox {d}t_3\nonumber \\&\quad \quad - \sum \limits _p \int _{0<t_2<t_1<T} \exp \bigg \{i\bigg (E(n,p)t_1+E(p,m)t_2\bigg )\bigg \}\nonumber \\&\quad \quad \times \bigg (\langle n|V_{1k}(t_1)|p\rangle \langle p|V_{2rs}(t_2)|m\rangle + \langle n|V_{2rs}(t_1)|p\rangle \langle p|V_{1k}(t_2)|m\rangle \bigg )\hbox {d}t_1\hbox {d}t_2 \end{aligned}$$
(91)

The notation E(np) can be used in this way \(E(n,p)=E_n-E_p\). Equivalently we can write

$$\begin{aligned} F_1&=F_1[n,m]=\sum \limits _kI_k G_{1k}\end{aligned}$$
(92)
$$\begin{aligned} F_2&= \sum \limits _{k,r}I_kI_rG_{2kr}\end{aligned}$$
(93)
$$\begin{aligned} F_3&=\sum \limits _{k,r,s}I_kI_rI_s G_{3krs} \end{aligned}$$
(94)

It should be noted that \(F_k[n,m]\) are, respectively, the matrix elements of the operator \(F_k\) defined in Eqs. (81), (82) and (83), where \(G_{1k}, G_{2kr}, G_{3krs}\) are the matrix coefficients of \(I_k, I_kI_r, I_kI_rI_s\) in \(F_1, F_2, F_3\), respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Rawat, T.K., Parthasarathy, H. et al. Realization of a quantum gate using gravitational search algorithm by perturbing three-dimensional harmonic oscillator with an electromagnetic field. Quantum Inf Process 15, 2275–2302 (2016). https://doi.org/10.1007/s11128-016-1270-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1270-7

Keywords

Navigation