Skip to main content
Log in

An improved robust ADMM algorithm for quantum state tomography

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, an improved adaptive weights alternating direction method of multipliers algorithm is developed to implement the optimization scheme for recovering the quantum state in nearly pure states. The proposed approach is superior to many existing methods because it exploits the low-rank property of density matrices, and it can deal with unexpected sparse outliers as well. The numerical experiments are provided to verify our statements by comparing the results to three different optimization algorithms, using both adaptive and fixed weights in the algorithm, in the cases of with and without external noise, respectively. The results indicate that the improved algorithm has better performances in both estimation accuracy and robustness to external noise. The further simulation results show that the successful recovery rate increases when more qubits are estimated, which in fact satisfies the compressive sensing theory and makes the proposed approach more promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith, A., Riofro, C., Anderson, B., Martinez, H., Deutsch, I., Jessen, P.: Quantum state tomography by continuous measurement and compressed sensing. Phys. Rev. A 87, 030102 (2013)

    Article  ADS  Google Scholar 

  2. Wu, X., Xu, K.: Partial standard quantum process tomography. Quantum Inf. Process. 12(2), 1379–1393 (2013). doi:10.1007/s11128-012-0473-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Heinosaari, T., Mazzarella, L., Wolf, M.: Quantum tomography under prior information. Commun. Math. Phys. 318(2), 355–374 (2013). doi:10.1007/s00220-013-1671-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Wu, L.A., Byrd, M.: Self-protected quantum algorithms based on quantum state tomography. Quantum Inf. Process. 8(1), 1–12 (2009). doi:10.1007/s11128-008-0090-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Baraniuk, R.: Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007). doi:10.1109/MSP.2007.4286571

    Article  ADS  MathSciNet  Google Scholar 

  6. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gross, D., Liu, Y., Flammia, S.T., Becker, S., Eisert, J.: Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105(15), 150401 (2010)

    Article  ADS  Google Scholar 

  8. Schwemmer, C., Tóth, G., Niggebaum, A., Moroder, T., Gross, D., Gühne, O., Weinfurter, H.: Experimental comparison of efficient tomography schemes for a six-qubit state. Phys. Rev. Lett. 113(5), 0401503 (2014)

    Google Scholar 

  9. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)

  10. Shabani, A., Kosut, R.L., Mohseni, M., Rabitz, H., Broome, M.A., Almeida, M.P., Fedrizzi, A., White, A.G.: Efficient measurement of quantum dynamics via compressive sensing. Phys. Rev. Lett. 106(4), 100401 (2011). doi:10.1103/PhysRevLett.106.100401

    Article  ADS  Google Scholar 

  11. Flammia, S.T., Gross, D., Liu, Y.K., Eisert, J.: Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 14(9), 095022 (2012)

    Article  ADS  Google Scholar 

  12. Miosso, C., von Borries, R., Argaez, M., Velazquez, L., Quintero, C., Potes, C.: Compressive sensing reconstruction with prior information by iteratively reweighted least-squares. IEEE Trans. Signal Process. 57(6), 2424–2431 (2009). doi:10.1109/TSP.2009.2016889

    Article  ADS  MathSciNet  Google Scholar 

  13. Kosut, R., Lidar, D.: Quantum error correction via convex optimization. Quantum Inf. Process. 8(5), 443–459 (2009). doi:10.1007/s11128-009-0120-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, Y.: Universal low-rank matrix recovery from pauli measurements. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1638–1646 (2011)

  15. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–22 (2011)

    Article  MATH  Google Scholar 

  16. He, B., Yang, H., Wang, S.: Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 106(2), 337–356 (2000). doi:10.1023/A:1004603514434

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low rank representation. In: Proceedings of Advances in Neural Information Processing Systems, pp. 612–620 (2011)

  18. Gross, D.: Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inf. Theory 57(3), 1548–1566 (2011). doi:10.1109/TIT.2011.2104999

    Article  MathSciNet  Google Scholar 

  19. Wright, J., Ganesh, A., Min, K., Ma, Y.: Compressive principal component pursuit. J. IMA 2, 32–68 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Yuan, X.M., Yang, J.: Sparse and low-rank matrix decomposition via alternating direction methods. Pac. J. Optim. (2009)

  21. Li, K., Cong, S.: A robust compressive quantum state tomography algorithm using admm. In: The 19th World Congress of the International Federation of Automatic Control, pp. 6878–6883 (2014)

  22. Cong S., Z.H., K., L.: An improved quantum state estimation algorithm via compressive sensing. In: 2014 IEEE international conference on Robio and Biomimetics, 5–10, pp. 2238–2343 (2014)

  23. Recht, B., Fazel, M., Parillo, P.: Guaranteed minimum rank solution of matrix equations via nuclear norm minimization. SIAM Rev. 52, 471–501 (2007)

    Article  MATH  Google Scholar 

  24. Zyczkowski, K., Penson, K.A., Nechita, I., Collins, B.: Generating random density matrices. J. Math. Phys. 52(6), 062201 (2011)

  25. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press, Cambridge, U.K. (2004)

    Book  MATH  Google Scholar 

  26. Candés, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 1–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Candès, E., Romberg, J.: Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math. 6(8), 227–254 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Candès, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Probl. 23, 969–985 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61573330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Cong.

Appendix

Appendix

Definition 1

(Rank RIP) [14, 23] The \(\mathcal {A}\) satisfies the rank-restricted isometry property (RIP) if for all \(d \times d\) \(\mathbf{X}\), we have

$$\begin{aligned} (1-\delta )||\mathbf{X}||_F \le ||\mathcal {A} (\mathbf{X})||_2 \le (1+\delta )||\mathbf{X}||_F \end{aligned}$$
(29)

where some constant \(0 < \delta <1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Zhang, H., Kuang, S. et al. An improved robust ADMM algorithm for quantum state tomography. Quantum Inf Process 15, 2343–2358 (2016). https://doi.org/10.1007/s11128-016-1288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1288-x

Keywords

Navigation