Skip to main content
Log in

Authenticated semi-quantum key distributions without classical channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Yu et al. have proposed the first authenticated semi-quantum key distribution (ASQKD) without using an authenticated classical channel. This study further proposes two advanced ASQKD protocols. Compared to Yu et al.’s schemes, the proposed protocols ensure better qubit efficiency and require fewer pre-shared keys. Security analyses show that the proposed ASQKD protocols also can be secure against several well-known outside eavesdropper’s attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)

    Article  MATH  Google Scholar 

  2. Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Cabello, A.: Quantum key distribution without alternative measurements. Phys. Rev. A 61(5), 052312, (2000)

    Article  ADS  Google Scholar 

  6. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Li, C., Song, H.S., Zhou, L., Wu, C.F.: A random quantum key distribution achieved by using Bell states. J. Opt. B Quantum Semiclassical Opt. 5(2), 155–157 (2003)

    Article  ADS  Google Scholar 

  8. Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with potential 100 % qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)

    Article  Google Scholar 

  9. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

  10. Shih, H.C., Lee, K.C., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Topics Quantum Electron. 15(6), 1602–1606 (2009)

    Article  Google Scholar 

  11. Hong, C.H., Heo, J.O., Khym, G.L., Lim, J., Hong, S.-K., Yang, H.J.: Quantum channels are sufficient for multi-user quantum key distribution protocol between users. Opt. Commun. 283(12), 2644–2646 (2010)

    Article  ADS  Google Scholar 

  12. Zhou, N., Wang, L., Gong, L., Zuo, X., Liu, Y.: Quantum deterministic key distribution protocols based on teleportation and entanglement swapping. Opt. Commun. 284(19), 4836–4842 (2011)

    Article  ADS  Google Scholar 

  13. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  16. Zhang, X.Z., Gong, W.G., Tan, Y.G., Ren, Z.Z., Guo, X.T.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B 18(6), 2143 (2009)

  17. Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)

  18. Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. Li, Q., Chan, W.H., Long, D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  20. Wang, J., Zhang, S., Zhang, Q., Tang, C.-J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(05), 1250050 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46(4), 045304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Yang, C.-W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(05), 1350052 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, J., Yang, C.-W., Tsai, C.-W., Hwang, T.: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52(1), 156–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, C.W., Hwang, T., Lin, T.H.: Modification attack on QSDC with authentication and the improvement. Int. J. Theor. Phys. 52(7), 2230–2234 (2013)

    Article  MathSciNet  Google Scholar 

  25. Yang, C.W., Hwang, T., Luo, Y.P.: Enhancement on quantum blind signature based on two-state vector formalism. Quantum Inf. Process. 12(1), 109–117 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against trojan horse attack. Quantum Phys. (2005). arXiv:quant-ph/0508168v1z

  27. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  28. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  29. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  30. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 73(4), 049901 (2006)

    Article  ADS  Google Scholar 

  31. Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and the anonymous reviewers for their very helpful and valuable comments to enhance the clarity of the manuscript. The authors also thank the Ministry of Science and Technology of the Republic of China, Taiwan, for partially supporting this research in finance under the Contract no. MOST 103-2221-E-471 -001 - and MOST 103-2221-E-006 -177 -.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CM., Yu, KF., Kao, SH. et al. Authenticated semi-quantum key distributions without classical channel. Quantum Inf Process 15, 2881–2893 (2016). https://doi.org/10.1007/s11128-016-1307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1307-y

Keywords

Navigation