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QUBIT REPRESENTATIONS OF THE BRAID GROUPS FROM

GENERALIZED YANG-BAXTER MATRICES

JENNIFER F. VASQUEZ, ZHENGHAN WANG, AND HELEN M. WONG

Abstract. Generalized Yang-Baxter matrices sometimes give rise to braid group representations.
We identify the exact images of some qubit representations of the braid groups from generalized
Yang-Baxter matrices obtained from anyons in the metaplectic modular categories.

1. Introduction

A generalized Yang-Baxter (gYB) matrix is an invertible 8 × 8 matrix R : (C2)
⊗3

→ (C2)
⊗3

such
that

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R),

where I is the identity operator on C
2. As in quantum information, we will refer to C

2 as a qubit.
This generalization of the Yang-Baxter equation, inspired by quantum information, is proposed in
[6], and referred to as the (2, 3, 1)-generalized in [5]. One application of a gYB matrix is to give rise

to new representations of the braid groups Bn on (n+1)-qubits (C2)
⊗(n+1)

by sending the standard
braid generator σi to

Rσi
= I⊗(i−1) ⊗R⊗ I⊗(n−i−1).

But Rσi
’s do not necessarily satisfy the far commutativity relation automatically. Therefore, we

need to check the commutativity in order to have braid group representations from gYB matrices.
We will refer to a braid group representation from a gYB matrix a qubit braid group representation.

One systematic way to find gYB matrices is to use weakly-integral anyons [5]. An interesting class
of weakly-integral anyons are those from the metaplectic modular categories related to parfermion
zero modes [4]. In [3], the authors considered the braid group representations from the anyon types
Yi in the metaplectic modular categories SO(m)2,m ≥ 3 odd. But the authors did not exactly
identify the images of the resulting qubit representations of the braid groups. In this note, we
completely identify the images for the case of odd m.

The explicit representation matrices can be used as quantum gates to set up quantum computation
models. One particular way would be to allow some qubits in the Bn representation spaces to
be ancillas. Since the braid representations have finite images, therefore the braiding gates alone
cannot be universal for quantum computation. It would be interesting to see if we can obtain
universality by supplementing braiding gates with measurements as in [1, 2].

2. Qubit braid group representations and their images

Let Bn be the braid group on n strings, generated by the elementary braids σ1, σ2, . . . , σn−1. We
consider a representation ρR : Bn → End((C2)⊗(n+1)) considered in [3]. We define ρR and express
it using the standard operators.

The second author is partially supported by NSF grant DMS-1411212, and the third author by NSF grants
DMS-1105692 and DMS-1510453. The authors thanks Matt Hastings for valuable communications.

1

http://arxiv.org/abs/1602.08536v1


2 JENNIFER F. VASQUEZ, ZHENGHAN WANG, AND HELEN M. WONG

2.1. Definition of the gYB representation ρR. Let m ≥ 3 be an odd integer. Let ν = −1 if
m = 3, and ν = +1 if m ≥ 5. Then R (which was denoted by RY1 in [3]) is the 8× 8 gYB matrix








ν cos( π
m
) 0 i sin( π

m
) 0

0 −i sin( π
m
) 0 cos( π

m
)

i sin( π
m
) 0 ν cos( π

m
) 0

0 cos( π
m
) 0 −i sin( π

m
)









⊕









−i sin( π
m
) 0 cos( π

m
) 0

0 ν cos( π
m
) 0 i sin( π

m
)

cos( π
m
) 0 −i sin( π

m
) 0

0 i sin( π
m
) 0 ν cos( π

m
)









,

where the ⊕ is the block sum of matrices. Here, we use the lexicographical convention for the order

of the eight 3-qubit basis elements.

Let n ≥ 2. The qubit representation ρR is the representation of Bn on (n+ 1)-qubits such that

ρR(σi) = I⊗(i−1) ⊗R⊗ I⊗(n−i−1)

for every i = 1, . . . , n − 1 (earlier referred to as Rσi
). Since Bn is generated by the elementary

braids σ1, . . . , σn−1, this determines the action of ρR for all elements of Bn. The far commutativity
can be checked directly, therefore, we have a qubit representation of the braid group.

The matrices Ui−1,i,i+1 in [3] correspond to our ρR(σi−1); we follow their convention for the sake
of symmetry. For the remainder of the paper, we take i = 2, . . . , n. In particular, ρR(σi−1) acts on
the (i− 1, i, i + 1)-qubits using R and leaves all the others the same.

2.1.1. Standard gates. Let Xi be the Pauli gate that changes the i-th qubit. Let Zi be the Pauli
gate that negates the qubit if the i-th qubit is nonzero. For example,

X2(|abc〉) = |ab̄c〉 and Z1Z3(|abc〉) =

{

|abc〉 if a = c

−|abc〉 if a 6= c
.

Let Λ2
XORNOT be the XOR controlled 3-qubit gate defined on the 3-qubit |abc〉:

Λ2
XORNOT (|abc〉) =

{

|abc〉 if a = c

|ab̄c〉 if a 6= c
.

Let NOTi (or NOTi−1,i,i+1) be the operator I
⊗(i−2)⊗Λ2

XORNOT ⊗I⊗(n−i−2). In particular, NOTi

is defined for 2 ≤ i ≤ n. It acts like Λ2
XORNOT on the consecutive (i− 1, i, i+1)-qubits and leaves

all the others unchanged. Whereas Zi−1Zi+1 negates the qubit iff the (i− 1)th and (i+1)th qubits
disagree, NOTi reverses the ith qubit iff the (i− 1)th and (i+ 1)th qubits disagree.

Note the following well-known commutativity properties between the Pauli gates and the NOTi

operators.

Lemma 1. (1) [Xi,Xj ] = 0 ∀ i, j.
(2) [Zi, Zj ] = 0 ∀ i, j.
(3) XiZi = −ZiXi and [Xi, Zj ] = 0 ∀ i 6= j.
(4) ZiNOTi = (Zi−1Zi+1)NOTiZi and [Zi, NOTj ] = 0 ∀ i 6= j.
(5) NOTiXi−1 = Xi−1XiNOTi, NOTiXi+1 = XiXi+1NOTi, and [NOTi,Xj ] = 0 ∀ j 6= i −

1, i+ 1.

The NOTi operators also satisfy the following relations:

Lemma 2. (1) NOT 2
i = Id.

(2) NOTiNOTi+1NOTi = NOTi+1NOTiNOTi+1.
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A variation of the next proposition features prominently in the characterization of the image of ρR.
We present it separately, as it may be of independent interest.

Proposition 3. The group G generated by NOT2, . . . , NOTn is isomorphic to the symmetric group
Sn.

Proof. Let (i − 1, i) denote the element in Sn that transposes the (i − 1)th and ith places. As Sn

is generated by such transpositions, we may define a map φ : Sn → G by φ((i − 1, i)) = NOTi for
2 ≤ i ≤ n.

Lemma 2 immediately implies that φ is a surjective homomorphism. To show that φ is injective, first
note that kerφ is a normal subgroup of Sn. For n ≥ 5, Sn is solvable. So ker(φ) ∈ {{e}, Sn, An}.
Since the image of φ is G and obviously |G| > 2 for this choice of n, ker(φ) = {e}. Therefore, φ
is an isomorphism for n ≥ 5. Of the remaining cases, the one for n = 2 is obvious, since both Sn

and G are isomorphic to Z2. For n = 3 and n = 4, we proceed similarly to the argument above
for n ≥ 5, except that we need to find explicit, distinct elements of G to show |G| > 2 for n = 3
and |G| > 6 for n = 4. For n = 3, we check that NOT2, NOT3, and NOT2NOT3 are distinct by
comparing their actions on the 4-qubit |0100〉. For n = 4, we need at least seven distinct elements.
We check that NOT2, NOT3, NOT4, NOT2NOT3, NOT3NOT4, NOT3NOT2, NOT4NOT3 act
distinctly on the 4-qubit |0110〉. �

2.1.2. Writing the gYB representation in terms of standard gates. We express the action of R on
3-qubits as

R(|abc〉) =

{

ν cos( π
m
)|abc〉+ i sin( π

m
)|ab̄c〉 if a = c

−i sin( π
m
)|abc〉+ cos( π

m
)|ab̄c〉 if a 6= c

.

Direct computation then shows

R =

{

e
2πi
3

X2 · Z1Z3Λ
2
XORNOT, for m = 3

e
πi
m

Z1X2Z3 · Λ2
XORNOT, for m ≥ 5

.

Hence for 2 ≤ i ≤ n

ρR(σi−1) =

{

e
2πi
3

Xi · Zi−1Zi+1NOTi, for m = 3

e
πi
m

Zi−1XiZi+1 ·NOTi for m ≥ 5
.

Note that there was an error in [3] for the m = 3 case.

2.2. The image of the qubit representation when m ≥ 5 is odd.

Theorem 4. For m ≥ 3 odd, the image of ρR is isomorphic to Z

n(n−1)
2

m ⋊ Sn.

We prove this theorem in a series of lemmas. Assume m is odd from now on. Following [3], for
2 ≤ i ≤ n, define

Hi =

{

Xi, for m = 3

Zi−1Zi+1Xi, for m ≥ 5
.

For k ≤ l, define the product of consecutive H’s as

Sk,l = HkHk+1 · · ·Hl.



4 JENNIFER F. VASQUEZ, ZHENGHAN WANG, AND HELEN M. WONG

Lemma 5. The image of ρR is generated by:

• (when m = 3) {e
2πi
3

(−1)l−kSk,l | 2 ≤ k ≤ l ≤ n} and {Zk−1Zk+1NOTk | 2 ≤ k ≤ n}.

• (when m ≥ 5 odd) {−e
πi
m

(−1)l−kSk,l | 2 ≤ k ≤ l ≤ n} and {−NOTk | 2 ≤ k ≤ n}.

Proof. Case for m = 3: Recall that ρR(σk−1) = e
2πi
3

XkZk−1Zk+1NOTk. It follows from Lemma 1
that Image(ρR) also contains

(e
2πi
3

XkZk−1Zk+1NOTk)
3 = Zk−1Zk+1NOTk

and

(e
2πi
3

XkZk−1Zk+1NOTk)
4 = e

2πi
3

Xk .

Recall Sk,l = XkXk+1 · · ·Xl. Induction shows the following is also in Image(ρR):

(ZlZl+2NOTl+1)(e
2πi
3

(−1)l−kSk,l)(ZlZl+2NOTl+1) = e
2πi
3

(−1)l+1−kSk,l+1 .

Again Lemma 1 is used to rearrange the operators. Thus all the elements e
2πi
3

(−1)l−kSk,l and
Zk−1Zk+1NOTk are contained in Image(ρR). Containment in the other way is obvious, because

the image of each braid element ρ(σk−1) = e
2πi
m

Xk ·Zk−1Zk+1NOTk can be written as a product of

e
2πi
m

Xk and Zk−1Zk+1NOTk.

Case for m ≥ 5 odd: Here ρR(σk−1) = e
πi
m

HkNOTk, where Hk = Zk−1XkZk+1. Thus

(e
πi
m

HkNOTk)
m = −NOTk

and

(e
πi
m

HkNOTk)
m+1 = −e

πi
m

Hk

are also in the image of ρR. Moreover, with Sk,l = HkHk+1 · · ·Hl,

(−NOTl+1)(−e
πi
m

(−1)l−kSk,l)(−NOTl+1) = −e
πi
m

(−1)l+1−kSk,l+1 .

Arguing similarly to the m = 3 case, we see that Image(ρR) is generated by all the e
πi
m

(−1)l−kSk,l

and −NOTk. �

We distinguish between the two kinds of generators. Define groups Γskl and Γnot as follows:

• (when m = 3)

Γskl to be the group generated by {e
2πi
3

(−1)l−kSk,l | 2 ≤ k ≤ l ≤ n} and
Γnot to be the group generated by {Zk−1Zk+1NOTk | 2 ≤ k ≤ n}.

• (when m ≥ 5 odd)

Γskl to be the group generated by {−e
πi
m

(−1)l−kSk,l | 2 ≤ k ≤ l ≤ n} and
Γnot to be the group generated by {−NOTk | 2 ≤ k ≤ n}.

Lemma 6. The image of ρR is a semi-direct product Γskl ⋊ Γnot.
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Proof. Note that the intersection is Γskl∩Γnot = {e}. To show that we have a semi-direct product,
we need to prove two things. Firstly, that every element of Image(ρR) is a product of an element of
Γskl with an element of Γnot. And secondly, that conjugation by elements of Γnot is an automorphism
of Γskl. Both of these can be shown from the following identities:

When m = 3, where Sk,l = XkXk+1 · · ·Xl,

(Zj−1Zj+1NOTj)Sk,l(Zj−1Zj+1NOTj) =































−Sk−1,l when j = k − 1

−Sk+1,l when j = k and k < l

−Sk,l−1 when j = l and k < l

−Sk,l+1 when j = l + 1

Sk,l otherwise

So

(Zj−1Zj+1NOTj)e
2πi
3

(−1)l−kSk,l(Zj−1Zj+1NOTj) =































e
2πi
3

(−1)l−(k−1)Sk−1,l when j = k − 1

e
2πi
3

(−1)l−(k+1)Sk+1,l when j = k and k < l

e
2πi
3

(−1)(l−1)−kSk,l−1 when j = l and k < l

e
2πi
3

(−1)(l+1)−kSk,l+1 when j = l + 1

e
2πi
3

(−1)l−kSk,l otherwise

In particular, conjugating a generator of Γskl by a generator of Γnot is again a generator of Γskl.
It immediately follows that conjugation by Γnot is an automorphism of Γskl. And with a bit more
work, the same identities show that every element of Image(ρR) is a product of an element of Γskl

with an element of Γnot. Since Γskl is a normal subgroup, Image(ρR) = Γskl ⋊ Γnot.

When m ≥ 5 odd, where Hk = Zk−1XkZk+1 and Sk,l = HkHk+1 · · ·Hl, the same identities are
true. Namely,

(−NOTj)Sk,l(−NOTj) =































−Sk−1,l j = k − 1

−Sk+1,l j = k and k < l

−Sk,l−1 j = l and k < l

−Sk,l+1 j = l + 1

Sk,l otherwise

(−NOTj)(−ei
πi
m

(−1)l−kSk,l)(−NOTj) =































−e
πi
m

(−1)l−(k−1)Sk−1,l when j = k − 1

−e
πi
m

(−1)l−(k+1)Sk+1,l when j = k and k < l

−e
πi
m

(−1)(l−1)−kSk,l−1 when j = l and k < l

−e
πi
m

(−1)(l+1)−kSk,l+1 when j = l + 1

−e
πi
m

(−1)l−kSk,l otherwise

So for the same reasons as in the m = 3 case, Image(ρR) = Γskl ⋊ Γnot when m ≥ 5 odd. �

Lemma 7. Γnot is isomorphic to the symmetric group Sn.

Proof. The proof is essentially the same as in Lemma 3 with a few minor tweaks. Specifically,
define φ : Sn → Γnot so that

• (when m = 3) φ((k − 1, k)) = Zk−1Zk+1NOTk

• (when m ≥ 5) φ((k − 1, k)) = −NOTk
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Lemmas 1 and 2 imply that φ is a surjective homomorphism. The proof of injectivity is identical for
n = 2 and n ≥ 5. For the case n = 3: use Z1Z3NOT2, Z2Z4NOT3, and (Z1Z3NOT2)(Z2Z4NOT3)
form = 3 and use−NOT2, −NOT3, and (−NOT2)(−NOT3) form ≥ 5, acting on |0100〉. Similarly,
for n = 4: use Z1Z3NOT2, Z2Z4NOT3, Z3Z5NOT4, (Z1Z3NOT2)(Z2Z4NOT3), (Z2Z4NOT3)(Z3Z5NOT4),
(Z2Z4NOT3)(Z1Z3NOT2), and (Z3Z5NOT4)(Z2Z4NOT3) for m = 3 and use −NOT2, −NOT3,
−NOT4, (−NOT2)(−NOT3), (−NOT3)(−NOT4), (−NOT3)(−NOT2), (−NOT4)(−NOT3) for
m ≥ 5, acting on |0110〉. �

Lemma 8. Γskl is a finite abelian group, isomorphic to the product of n(n− 1) copies of Zm.

Proof. In both the m = 3 and m ≥ 5 odd cases, the given generators of Γskl are distinct and no
power of one is equal to the power of another. In fact, the generators form a linearly independent
set of n(n − 1)/2 elements, as can be seen by their action on the qubit |00 · · · 0〉. Moreover, the
generators commute with each other, and each generator has exactly order m. So it must be the
abelian product of n(n− 1)/2 copies of Zm. �

Putting all the lemmas together proves Theorem 4, that for m ≥ 3 odd, Image(ρR) ∼= Z

n(n−1)
2

m ⋊Sn.
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