Skip to main content
Log in

Quantum private query based on single-photon interference

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum private query (QPQ) has become a research hotspot recently. Specially, the quantum key distribution (QKD)-based QPQ attracts lots of attention because of its practicality. Various such kind of QPQ protocols have been proposed based on different technologies of quantum communications. Single-photon interference is one of such technologies, on which the famous QKD protocol GV95 is just based. In this paper, we propose two QPQ protocols based on single-photon interference. The first one is simpler and easier to realize, and the second one is loss tolerant and flexible, and more practical than the first one. Furthermore, we analyze both the user privacy and the database privacy in the proposed protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing. New York: IEEE, pp. 175–179, (1984)

  2. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)

    Article  ADS  Google Scholar 

  3. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  4. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Liu, B., Gao, F., Wen, Q.Y.: Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J. Quantum Electron. 47, 1383–1390 (2011)

    Article  ADS  Google Scholar 

  6. Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Liu, B., Gao, F., Qin, S.J., et al.: Choice of measurement as the secret. Phys. Rev. A 89, 042318 (2014)

    Article  ADS  Google Scholar 

  9. Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3413 (1997)

    Article  ADS  Google Scholar 

  10. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)

    Article  ADS  Google Scholar 

  11. Liu, B., Gao, F., Jia, H.Y., et al.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12, 887–897 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60, 592–629 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1154–1162 (1997)

    Article  ADS  Google Scholar 

  14. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100, 230502 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries: security analysis. IEEE Trans. Inf. Theory 56, 3465–3477 (2010)

    Article  MathSciNet  Google Scholar 

  16. Martini, F.D., Giovannetti, V., Lloyd, S., Maccone, L., et al.: Experimental quantum private queries with linear optics. Phys. Rev. A 80, 010302 (2009)

    Article  Google Scholar 

  17. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access memory. Phys. Rev. A 78, 052310 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84, 022313 (2011)

    Article  ADS  Google Scholar 

  20. Yu, F., Qiu, D.-W.: Coding-based quantum private database query using entanglement. Quantum Inf. Comput. 14, 91–106 (2014)

    MathSciNet  Google Scholar 

  21. Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  ADS  Google Scholar 

  22. Scarani, V., Acín, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)

    Article  ADS  Google Scholar 

  23. Liu, B., Gao, F., Huang, W., et al.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Liu, B., Gao, F., Huang, W., Li, D., Wen, Q.-Y.: Controlling the key by choosing the detection bits in quantum cryptographic protocols. Sci. China Inf. Sci. 58(11), 112110 (2015)

    MathSciNet  Google Scholar 

  25. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 6600111 (2015)

    Google Scholar 

  26. Gao, F., Liu, B., Wen, Q.Y., et al.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20, 17411–17420 (2012)

    Article  ADS  Google Scholar 

  27. Zhang, J.L., Guo, F.Z., Gao, F., et al.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88, 022334 (2013)

    Article  ADS  Google Scholar 

  28. Wei, C.Y., Gao, F., Wen, Q.Y., Wang, T.Y.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)

    Article  ADS  Google Scholar 

  29. Yang, Y.G., Sun, S.J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)

    Article  MathSciNet  Google Scholar 

  30. Yang, Y.G., Sun, S.J., Tian, J., et al.: Secure quantum private query with real-time security check. OPTIK 125(19), 5538–5541 (2014)

    Article  ADS  Google Scholar 

  31. Yang, Y.G., Zhang, M.O., Yang, R.: Private database queries using one quantum state. Quantum Inf. Process. 14, 1017–1024 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Sun, S.J., Yang, Y.G., Zhang, M.O.: Relativistic quantum private database queries. Quantum Inf. Process. 14, 1443–1450 (2015)

    Article  ADS  MATH  Google Scholar 

  33. Rao, M.V.P., Jakobi, M.: Towards communication-efficient quantum oblivious key distribution. Phys. Rev. A 87, 012331 (2013)

    Article  ADS  Google Scholar 

  34. Shen, D.S., Zhu, X.C., Ma, W.P., et al.: Improvement on private database queries based on the quantum key distribution. J. Optoelectron. Adv. Mater. 14, 504–510 (2012)

    Google Scholar 

  35. Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. Chan, P., Lucio-Martinez, I., Mo, X., Simon, C., Tittel, W.: Performing private database queries in a real-world environment using a quantum protocol. Sci. Rep. 4, 5233 (2014)

    ADS  Google Scholar 

  37. Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photonics 1, 238–278 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant Nos. 61103210, 61272514, 61202451) and the Fundamental Research Funds for the Central Universities (Grant Nos. 2014KF-XSW, YZDJ1103, YZDJ1102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, SW., Sun, Y. & Lin, S. Quantum private query based on single-photon interference. Quantum Inf Process 15, 3301–3310 (2016). https://doi.org/10.1007/s11128-016-1326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1326-8

Keywords

Navigation